Potential Method in Mathematical Theories of Multi-Porosity Media

This monograph explores the application of the potential method to three-dimensional problems of the mathematical theories of elasticity and thermoelasticity for multi-porosity materials. These models offer several new possibilities for the study of important problems in engineering and mechanics in...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Svanadze, Merab (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Interdisciplinary Applied Mathematics, 51
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04631nam a2200589 4500
001 978-3-030-28022-2
003 DE-He213
005 20191101203655.0
007 cr nn 008mamaa
008 191101s2019 gw | s |||| 0|eng d
020 |a 9783030280222  |9 978-3-030-28022-2 
024 7 |a 10.1007/978-3-030-28022-2  |2 doi 
040 |d GrThAP 
050 4 |a QC19.2-20.85 
072 7 |a PBWH  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a PBWH  |2 thema 
082 0 4 |a 519  |2 23 
100 1 |a Svanadze, Merab.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Potential Method in Mathematical Theories of Multi-Porosity Media  |h [electronic resource] /  |c by Merab Svanadze. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a XVI, 302 p. 1 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Interdisciplinary Applied Mathematics,  |x 0939-6047 ;  |v 51 
505 0 |a Preface -- Introduction -- Fundamental Solutions in Elasticity -- Galerkin-Type Solutions and Green's Formulas in Elasticity -- Problems of Steady Vibrations of Rigid Body -- Problems of Equilibrium of Rigid Body -- Problems of Steady Vibrations in Elasticity -- Problems of Quasi-Static in Elasticity -- Problems of Pseudo-Oscillations in Elasticity -- Problems of Steady Vibrations in Thermoelasticity -- Problems of Pseudo-Oscillations in Thermoelasticity -- Problems of Quasi-Static in Thermoelasticity -- Problems of Heat Conduction for Rigid Body -- Future Research Perspectives. 
520 |a This monograph explores the application of the potential method to three-dimensional problems of the mathematical theories of elasticity and thermoelasticity for multi-porosity materials. These models offer several new possibilities for the study of important problems in engineering and mechanics involving multi-porosity materials, including geological materials (e.g., oil, gas, and geothermal reservoirs); manufactured porous materials (e.g., ceramics and pressed powders); and biomaterials (e.g., bone and the human brain). Proceeding from basic to more advanced material, the first part of the book begins with fundamental solutions in elasticity, followed by Galerkin-type solutions and Green's formulae in elasticity and problems of steady vibrations, quasi-static, and pseudo-oscillations for multi-porosity materials. The next part follows a similar format for thermoelasticity, concluding with a chapter on problems of heat conduction for rigid bodies. The final chapter then presents a number of open research problems to which the results presented here can be applied. All results discussed by the author have not been published previously and offer new insights into these models. Potential Method in Mathematical Theories of Multi-Porosity Media will be a valuable resource for applied mathematicians, mechanical, civil, and aerospace engineers, and researchers studying continuum mechanics. Readers should be knowledgeable in classical theories of elasticity and thermoelasticity. 
650 0 |a Mathematical physics. 
650 0 |a Numerical analysis. 
650 0 |a Partial differential equations. 
650 0 |a Mathematical models. 
650 0 |a Mechanics. 
650 0 |a Mechanics, Applied. 
650 0 |a Geophysics. 
650 1 4 |a Mathematical Applications in the Physical Sciences.  |0 http://scigraph.springernature.com/things/product-market-codes/M13120 
650 2 4 |a Numerical Analysis.  |0 http://scigraph.springernature.com/things/product-market-codes/M14050 
650 2 4 |a Partial Differential Equations.  |0 http://scigraph.springernature.com/things/product-market-codes/M12155 
650 2 4 |a Mathematical Modeling and Industrial Mathematics.  |0 http://scigraph.springernature.com/things/product-market-codes/M14068 
650 2 4 |a Solid Mechanics.  |0 http://scigraph.springernature.com/things/product-market-codes/T15010 
650 2 4 |a Geophysics and Environmental Physics.  |0 http://scigraph.springernature.com/things/product-market-codes/P32000 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030280215 
776 0 8 |i Printed edition:  |z 9783030280239 
776 0 8 |i Printed edition:  |z 9783030280246 
830 0 |a Interdisciplinary Applied Mathematics,  |x 0939-6047 ;  |v 51 
856 4 0 |u https://doi.org/10.1007/978-3-030-28022-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)