Introduction to ℓ²-invariants

This book introduces the reader to the most important concepts and problems in the field of ℓ²-invariants. After some foundational material on group von Neumann algebras, ℓ²-Betti numbers are defined and their use is illustrated by several examples. The text continues with Atiyah's question on...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Kammeyer, Holger (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Lecture Notes in Mathematics, 2247
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03122nam a2200529 4500
001 978-3-030-28297-4
003 DE-He213
005 20191106021701.0
007 cr nn 008mamaa
008 191029s2019 gw | s |||| 0|eng d
020 |a 9783030282974  |9 978-3-030-28297-4 
024 7 |a 10.1007/978-3-030-28297-4  |2 doi 
040 |d GrThAP 
050 4 |a QA612-612.8 
072 7 |a PBPD  |2 bicssc 
072 7 |a MAT038000  |2 bisacsh 
072 7 |a PBPD  |2 thema 
082 0 4 |a 514.2  |2 23 
100 1 |a Kammeyer, Holger.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Introduction to ℓ²-invariants  |h [electronic resource] /  |c by Holger Kammeyer. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a VIII, 183 p. 37 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2247 
520 |a This book introduces the reader to the most important concepts and problems in the field of ℓ²-invariants. After some foundational material on group von Neumann algebras, ℓ²-Betti numbers are defined and their use is illustrated by several examples. The text continues with Atiyah's question on possible values of ℓ²-Betti numbers and the relation to Kaplansky's zero divisor conjecture. The general definition of ℓ²-Betti numbers allows for applications in group theory. A whole chapter is dedicated to Lück's approximation theorem and its generalizations. The final chapter deals with ℓ²-torsion, twisted variants and the conjectures relating them to torsion growth in homology. The text provides a self-contained treatment that constructs the required specialized concepts from scratch. It comes with numerous exercises and examples, so that both graduate students and researchers will find it useful for self-study or as a basis for an advanced lecture course. 
650 0 |a Algebraic topology. 
650 0 |a Manifolds (Mathematics). 
650 0 |a Complex manifolds. 
650 0 |a Functional analysis. 
650 0 |a Group theory. 
650 1 4 |a Algebraic Topology.  |0 http://scigraph.springernature.com/things/product-market-codes/M28019 
650 2 4 |a Manifolds and Cell Complexes (incl. Diff.Topology).  |0 http://scigraph.springernature.com/things/product-market-codes/M28027 
650 2 4 |a Functional Analysis.  |0 http://scigraph.springernature.com/things/product-market-codes/M12066 
650 2 4 |a Group Theory and Generalizations.  |0 http://scigraph.springernature.com/things/product-market-codes/M11078 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030282967 
776 0 8 |i Printed edition:  |z 9783030282981 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2247 
856 4 0 |u https://doi.org/10.1007/978-3-030-28297-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)