A Model-Theoretic Approach to Proof Theory

This book presents a detailed treatment of ordinal combinatorics of large sets tailored for independence results. It uses model theoretic and combinatorial methods to obtain results in proof theory, such as incompleteness theorems or a description of the provably total functions of a theory. In the...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Kotlarski, Henryk (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Adamowicz, Zofia (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Bigorajska, Teresa (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Zdanowski, Konrad (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Trends in Logic, Studia Logica Library, 51
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04029nam a2200517 4500
001 978-3-030-28921-8
003 DE-He213
005 20191026151625.0
007 cr nn 008mamaa
008 190926s2019 gw | s |||| 0|eng d
020 |a 9783030289218  |9 978-3-030-28921-8 
024 7 |a 10.1007/978-3-030-28921-8  |2 doi 
040 |d GrThAP 
050 4 |a BC1-199 
072 7 |a HPL  |2 bicssc 
072 7 |a PHI011000  |2 bisacsh 
072 7 |a QDTL  |2 thema 
082 0 4 |a 160  |2 23 
100 1 |a Kotlarski, Henryk.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 2 |a A Model-Theoretic Approach to Proof Theory  |h [electronic resource] /  |c by Henryk Kotlarski ; edited by Zofia Adamowicz, Teresa Bigorajska, Konrad Zdanowski. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a XVIII, 109 p. 53 illus., 1 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Trends in Logic, Studia Logica Library,  |x 1572-6126 ;  |v 51 
505 0 |a Chapter 1. Some combinatorics -- Chapter 2. Some model theory -- Chapter 3. Incompleteness -- Chapter 4. Transfinite induction -- Chapter 5. Satisfaction classes. 
520 |a This book presents a detailed treatment of ordinal combinatorics of large sets tailored for independence results. It uses model theoretic and combinatorial methods to obtain results in proof theory, such as incompleteness theorems or a description of the provably total functions of a theory. In the first chapter, the authors first discusses ordinal combinatorics of finite sets in the style of Ketonen and Solovay. This provides a background for an analysis of subsystems of Peano Arithmetic as well as for combinatorial independence results. Next, the volume examines a variety of proofs of Gödel's incompleteness theorems. The presented proofs differ strongly in nature. They show various aspects of incompleteness phenomena. In additon, coverage introduces some classical methods like the arithmetized completeness theorem, satisfaction predicates or partial satisfaction classes. It also applies them in many contexts. The fourth chapter defines the method of indicators for obtaining independence results. It shows what amount of transfinite induction we have in fragments of Peano arithmetic. Then, it uses combinatorics of large sets of the first chapter to show independence results. The last chapter considers nonstandard satisfaction classes. It presents some of the classical theorems related to them. In particular, it covers the results by S. Smith on definability in the language with a satisfaction class and on models without a satisfaction class. Overall, the book's content lies on the border between combinatorics, proof theory, and model theory of arithmetic. It offers readers a distinctive approach towards independence results by model-theoretic methods. 
650 0 |a Logic. 
650 0 |a Mathematical logic. 
650 1 4 |a Logic.  |0 http://scigraph.springernature.com/things/product-market-codes/E16000 
650 2 4 |a Mathematical Logic and Foundations.  |0 http://scigraph.springernature.com/things/product-market-codes/M24005 
700 1 |a Adamowicz, Zofia.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Bigorajska, Teresa.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Zdanowski, Konrad.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030289201 
776 0 8 |i Printed edition:  |z 9783030289225 
776 0 8 |i Printed edition:  |z 9783030289232 
830 0 |a Trends in Logic, Studia Logica Library,  |x 1572-6126 ;  |v 51 
856 4 0 |u https://doi.org/10.1007/978-3-030-28921-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)