Rational Design of Nanostructured Polymer Electrolytes and Solid-Liquid Interphases for Lithium Batteries

This thesis makes significant advances in the design of electrolytes and interfaces in electrochemical cells that utilize reactive metals as anodes. Such cells are of contemporary interest because they offer substantially higher charge storage capacity than state-of-the-art lithium-ion battery techn...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Choudhury, Snehashis (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Springer Theses, Recognizing Outstanding Ph.D. Research,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04873nam a2200577 4500
001 978-3-030-28943-0
003 DE-He213
005 20191025003130.0
007 cr nn 008mamaa
008 190925s2019 gw | s |||| 0|eng d
020 |a 9783030289430  |9 978-3-030-28943-0 
024 7 |a 10.1007/978-3-030-28943-0  |2 doi 
040 |d GrThAP 
050 4 |a TA401-492 
050 4 |a QC72-QC73.8 
072 7 |a TGM  |2 bicssc 
072 7 |a TEC021000  |2 bisacsh 
072 7 |a TGM  |2 thema 
082 0 4 |a 620.11  |2 23 
100 1 |a Choudhury, Snehashis.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Rational Design of Nanostructured Polymer Electrolytes and Solid-Liquid Interphases for Lithium Batteries  |h [electronic resource] /  |c by Snehashis Choudhury. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a XVII, 230 p. 116 illus., 99 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
505 0 |a Chapter 1. Introduction -- Chapter 2. Self-Suspended Suspensions of Covalently Grafted Hairy Nanoparticles -- Chapter 3. A Highly Conductive, Non-flammable Polymernanoparticle Hybrid Electrolyte -- Chapter 4. Hybrid Hairy Nanoparticle Electrolytes Stabilize Lithium Metal Batteries -- Chapter 5. A Highly Reversible Room Temperature Lithium Metal Battery Based on Cross-linked Hairy Nanoparticles -- Chapter 6. Confining Electrodeposition of Metals in Structured Electrolytes -- Chapter 7. Soft Colloidal Glasses as Solid-State -- Chapter 8. Solid Polymer Interphases for Lithium Metal Batteries -- Chapter 9. Stabilizing Polymer Electrolytes in High-Voltage Lithium Batteries -- Chapter 10. Lithium Fluoride Additives for Stable Cycling of Lithium Batteries at High Current Densities -- Chapter 11. Designing Solid-Liquid Interphases for Sodium Batteries -- Chapter 12. Electroless Formation of Hybrid Lithium Anodes for High Interfacial Ion Transport -- Chapter 13. Designer Interphases For the Lithium-Oxygen Electrochemical Cell. 
520 |a This thesis makes significant advances in the design of electrolytes and interfaces in electrochemical cells that utilize reactive metals as anodes. Such cells are of contemporary interest because they offer substantially higher charge storage capacity than state-of-the-art lithium-ion battery technology. Batteries based on metallic anodes are currently considered impractical and unsafe because recharge of the anode causes physical and chemical instabilities that produce dendritic deposition of the metal leading to catastrophic failure via thermal runaway. This thesis utilizes a combination of chemical synthesis, physical & electrochemical analysis, and materials theory to investigate structure, ion transport properties, and electrochemical behaviors of hybrid electrolytes and interfacial phases designed to prevent such instabilities. In particular, it demonstrates that relatively low-modulus electrolytes composed of cross-linked networks of polymer-grafted nanoparticles stabilize electrodeposition of reactive metals by multiple processes, including screening electrode electrolyte interactions at electrochemical interfaces and by regulating ion transport in tortuous nanopores. This discovery is significant because it overturns a longstanding perception in the field of nanoparticle-polymer hybrid electrolytes that only solid electrolytes with mechanical modulus higher than that of the metal electrode are able to stabilize electrodeposition of reactive metals. 
650 0 |a Materials science. 
650 0 |a Force and energy. 
650 0 |a Energy storage. 
650 0 |a Polymers  . 
650 0 |a Nanoscale science. 
650 0 |a Nanoscience. 
650 0 |a Nanostructures. 
650 1 4 |a Energy Materials.  |0 http://scigraph.springernature.com/things/product-market-codes/Z21000 
650 2 4 |a Energy Storage.  |0 http://scigraph.springernature.com/things/product-market-codes/116000 
650 2 4 |a Polymer Sciences.  |0 http://scigraph.springernature.com/things/product-market-codes/C22008 
650 2 4 |a Nanoscale Science and Technology.  |0 http://scigraph.springernature.com/things/product-market-codes/P25140 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030289423 
776 0 8 |i Printed edition:  |z 9783030289447 
776 0 8 |i Printed edition:  |z 9783030289454 
830 0 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
856 4 0 |u https://doi.org/10.1007/978-3-030-28943-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-CMS 
950 |a Chemistry and Materials Science (Springer-11644)