Artificial Neural Networks and Machine Learning - ICANN 2019: Deep Learning 28th International Conference on Artificial Neural Networks, Munich, Germany, September 17-19, 2019, Proceedings, Part II /

The proceedings set LNCS 11727, 11728, 11729, 11730, and 11731 constitute the proceedings of the 28th International Conference on Artificial Neural Networks, ICANN 2019, held in Munich, Germany, in September 2019. The total of 277 full papers and 43 short papers presented in these proceedings was ca...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Tetko, Igor V. (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Kůrková, Věra (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Karpov, Pavel (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Theis, Fabian (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Theoretical Computer Science and General Issues ; 11728
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 08482nam a2200613 4500
001 978-3-030-30484-3
003 DE-He213
005 20191022063353.0
007 cr nn 008mamaa
008 190904s2019 gw | s |||| 0|eng d
020 |a 9783030304843  |9 978-3-030-30484-3 
024 7 |a 10.1007/978-3-030-30484-3  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Artificial Neural Networks and Machine Learning - ICANN 2019: Deep Learning  |h [electronic resource] :  |b 28th International Conference on Artificial Neural Networks, Munich, Germany, September 17-19, 2019, Proceedings, Part II /  |c edited by Igor V. Tetko, Věra Kůrková, Pavel Karpov, Fabian Theis. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a XXX, 807 p. 294 illus., 193 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Theoretical Computer Science and General Issues ;  |v 11728 
505 0 |a Adaptive Graph Fusion for Unsupervised Feature Selection -- Unsupervised Feature Selection via Local Total-order Preservation -- Discrete Stochastic Search and its Application to Feature-Selection for Deep Relational Machines -- Joint Dictionary Learning for Unsupervised Feature Selection -- Comparison between Filter Criteria for Feature Selection in Regression -- CancelOut: A layer for feature selection in deep neural networks -- Adaptive-L2 Batch Neural Gas -- Application of Self Organizing Map to Preprocessing Input Vectors for Convolutional Neural Network -- Hierarchical Reinforcement Learning with Unlimited Recursive Subroutine Calls -- Automatic Augmentation by Hill Climbing -- Learning Camera-invariant Representation for Person Re-identification -- PA-RetinaNet: Path Augmented RetinaNet for Dense Object Detection -- Singular Value Decomposition and Neural Networks -- PCI: Principal Component Initialization for Deep Autoencoders -- Improving Weight Initialization of ReLU and Output Layers -- Post-synaptic potential regularization has potential -- A Novel Modification on the Levenberg-Marquardt Algorithm for Avoiding Overfitting in Neural Network Training -- Sign Based Derivative Filtering for Stochastic Gradient Descent -- Architecture-aware Bayesian Optimization for Neural Network Tuning -- Non-Convergence and Limit Cycles in the Adam Optimizer -- Learning Internal Dense But External Sparse Structures of Deep Convolutional Neural Network -- Using feature entropy to guide filter pruning for efficient convolutional networks -- Simultaneously Learning Architectures and Features of Deep Neural Networks -- Learning Sparse Hidden States in Long Short-Term Memory -- Multi-objective Pruning for CNNs using Genetic Algorithm -- Dynamically Sacrificing Accuracy for Reduced Computation: Cascaded Inference Based on Softmax Confidence -- Light-Weight Edge Enhanced Network for On-orbit Semantic Segmentation -- Local Normalization Based BN Layer Pruning -- On Practical Approach to Uniform Quantization of Non-redundant Neural Networks -- Residual learning for FC kernels of convolutional network -- A Novel Neural Network-based Symbolic Regression Method: Neuro-Encoded Expression Programming -- Compute-efficient neural network architecture optimization by a genetic algorithm -- Controlling Model Complexity in Probabilistic Model-Based Dynamic Optimization of Neural Network Structures -- Predictive Uncertainty Estimation with Temporal Convolutional Networks for Dynamic Evolutionary Optimization -- Sparse Recurrent Mixture Density Networks for Forecasting High Variability Time Series with Confidence Estimates -- A multitask learning neural network for short-term traffic speed prediction and confidence estimation -- Central-diffused Instance Generation Method in Class Incremental Learning -- Marginal Replay vs Conditional Replay for Continual Learning -- Simplified computation and interpretation of Fisher matrices in incremental learning with deep neural networks -- Active Learning for Image Recognition using a Visualization-Based User Interface -- Basic Evaluation Scenarios for Incrementally Trained Classifiers -- Embedding Complexity of Learned Representations in Neural Networks -- Joint Metric Learning on Riemannian Manifold of Global Gaussian Distributions -- Multi-Task Sparse Regression Metric Learning for Heterogeneous Classification -- Fast Approximate Geodesics for Deep Generative Models -- Spatial Attention Network for Few-Shot Learning -- Routine Modeling with Time Series Metric Learning -- Leveraging Domain Knowledge for Reinforcement Learning using MMC Architectures -- Conditions for Unnecessary Logical Constraints in Kernel Machines -- HiSeqGAN: Hierarchical Sequence Synthesis and Prediction -- DeepEX: Bridging the Gap Between Knowledge and Data Driven Techniques for Time Series Forecasting -- Transferable Adversarial Cycle Alignment for Domain Adaption -- Evaluation of domain adaptation approaches for robust classification of heterogeneous biological data sets -- Named Entity Recognition for Chinese Social Media with Domain Adversarial Training and Language Modeling -- Deep Domain Knowledge Distillation for Person Re-identification -- A study on catastrophic forgetting in deep LSTM networks -- A Label-specific Attention-based Network with Regularized Loss for Multi-label Classification -- An Empirical Study of Multi-domain and Multi-task Learning in Chinese Named Entity Recognition -- Filter Method Ensemble with Neural Networks -- Dynamic Centroid Insertion and Adjustment for Data Sets with Multiple Imbalanced Classes -- Increasing the Generalisaton Capacity of Conditional VAEs -- Playing the Large Margin Preference Game. 
520 |a The proceedings set LNCS 11727, 11728, 11729, 11730, and 11731 constitute the proceedings of the 28th International Conference on Artificial Neural Networks, ICANN 2019, held in Munich, Germany, in September 2019. The total of 277 full papers and 43 short papers presented in these proceedings was carefully reviewed and selected from 494 submissions. They were organized in 5 volumes focusing on theoretical neural computation; deep learning; image processing; text and time series; and workshop and special sessions. . 
650 0 |a Artificial intelligence. 
650 0 |a Optical data processing. 
650 0 |a Computer organization. 
650 0 |a Computers. 
650 0 |a Algorithms. 
650 0 |a Computer security. 
650 1 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Image Processing and Computer Vision.  |0 http://scigraph.springernature.com/things/product-market-codes/I22021 
650 2 4 |a Computer Systems Organization and Communication Networks.  |0 http://scigraph.springernature.com/things/product-market-codes/I13006 
650 2 4 |a Information Systems and Communication Service.  |0 http://scigraph.springernature.com/things/product-market-codes/I18008 
650 2 4 |a Algorithm Analysis and Problem Complexity.  |0 http://scigraph.springernature.com/things/product-market-codes/I16021 
650 2 4 |a Systems and Data Security.  |0 http://scigraph.springernature.com/things/product-market-codes/I28060 
700 1 |a Tetko, Igor V.  |e editor.  |0 (orcid)0000-0002-6855-0012  |1 https://orcid.org/0000-0002-6855-0012  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Kůrková, Věra.  |e editor.  |0 (orcid)0000-0002-8181-2128  |1 https://orcid.org/0000-0002-8181-2128  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Karpov, Pavel.  |e editor.  |0 (orcid)0000-0003-4786-9806  |1 https://orcid.org/0000-0003-4786-9806  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Theis, Fabian.  |e editor.  |0 (orcid)0000-0002-2419-1943  |1 https://orcid.org/0000-0002-2419-1943  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030304836 
776 0 8 |i Printed edition:  |z 9783030304850 
830 0 |a Theoretical Computer Science and General Issues ;  |v 11728 
856 4 0 |u https://doi.org/10.1007/978-3-030-30484-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
912 |a ZDB-2-LNC 
950 |a Computer Science (Springer-11645)