An Elastic Model for Volcanology

This monograph presents a rigorous mathematical framework for a linear elastic model arising from volcanology that explains deformation effects generated by inflating or deflating magma chambers in the Earth's interior. From a mathematical perspective, these modeling assumptions manifest as a b...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Aspri, Andrea (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Birkhäuser, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Lecture Notes in Geosystems Mathematics and Computing
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03227nam a2200517 4500
001 978-3-030-31475-0
003 DE-He213
005 20191220130113.0
007 cr nn 008mamaa
008 191108s2019 gw | s |||| 0|eng d
020 |a 9783030314750  |9 978-3-030-31475-0 
024 7 |a 10.1007/978-3-030-31475-0  |2 doi 
040 |d GrThAP 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
072 7 |a PBKJ  |2 thema 
082 0 4 |a 515.353  |2 23 
100 1 |a Aspri, Andrea.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 3 |a An Elastic Model for Volcanology  |h [electronic resource] /  |c by Andrea Aspri. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2019. 
300 |a X, 126 p. 7 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Geosystems Mathematics and Computing 
505 0 |a Preface -- From the physical to the mathematical model -- A scalar model in the half-space -- Analysis of the elastic model -- Index. 
520 |a This monograph presents a rigorous mathematical framework for a linear elastic model arising from volcanology that explains deformation effects generated by inflating or deflating magma chambers in the Earth's interior. From a mathematical perspective, these modeling assumptions manifest as a boundary value problem that has long been known by researchers in volcanology, but has not, until now, been given a thorough mathematical treatment. This mathematical study gives an explicit formula for the solution of the boundary value problem which generalizes the few well-known, explicit solutions found in geophysics literature. Using two distinct analytical approaches-one involving weighted Sobolev spaces, and the other using single and double layer potentials-the well-posedness of the elastic model is proven. An Elastic Model for Volcanology will be of particular interest to mathematicians researching inverse problems, as well as geophysicists studying volcanology. 
650 0 |a Partial differential equations. 
650 0 |a Geophysics. 
650 0 |a Potential theory (Mathematics). 
650 0 |a Mathematical models. 
650 1 4 |a Partial Differential Equations.  |0 http://scigraph.springernature.com/things/product-market-codes/M12155 
650 2 4 |a Geophysics/Geodesy.  |0 http://scigraph.springernature.com/things/product-market-codes/G18009 
650 2 4 |a Potential Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/M12163 
650 2 4 |a Mathematical Modeling and Industrial Mathematics.  |0 http://scigraph.springernature.com/things/product-market-codes/M14068 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030314743 
776 0 8 |i Printed edition:  |z 9783030314767 
830 0 |a Lecture Notes in Geosystems Mathematics and Computing 
856 4 0 |u https://doi.org/10.1007/978-3-030-31475-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)