Foundations of Hyperbolic Manifolds

This book is an exposition of the theoretical foundations of hyperbolic manifolds. It is intended to be used both as a textbook and as a reference. This third edition greatly expands upon the second with an abundance of additional content, including a section dedicated to arithmetic hyperbolic group...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Ratcliffe, John G. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:3rd ed. 2019.
Σειρά:Graduate Texts in Mathematics, 149
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04172nam a2200517 4500
001 978-3-030-31597-9
003 DE-He213
005 20191026012113.0
007 cr nn 008mamaa
008 191023s2019 gw | s |||| 0|eng d
020 |a 9783030315979  |9 978-3-030-31597-9 
024 7 |a 10.1007/978-3-030-31597-9  |2 doi 
040 |d GrThAP 
050 4 |a QA440-699 
072 7 |a PBM  |2 bicssc 
072 7 |a MAT012000  |2 bisacsh 
072 7 |a PBM  |2 thema 
082 0 4 |a 516  |2 23 
100 1 |a Ratcliffe, John G.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Foundations of Hyperbolic Manifolds  |h [electronic resource] /  |c by John G. Ratcliffe. 
250 |a 3rd ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a XII, 800 p. 160 illus., 152 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 149 
505 0 |a Euclidean Geometry -- Spherical Geometry -- Hyperbolic Geometry -- Inversive Geometry -- Isometries of Hyperbolic Space -- Geometry of Discrete Groups -- Classical Discrete Groups -- Geometric Manifolds -- Geometric Surfaces -- Hyperbolic 3-Manifolds -- Hyperbolic n-Manifolds -- Geometrically Finite n-Manifolds -- Geometric Orbifolds. 
520 |a This book is an exposition of the theoretical foundations of hyperbolic manifolds. It is intended to be used both as a textbook and as a reference. This third edition greatly expands upon the second with an abundance of additional content, including a section dedicated to arithmetic hyperbolic groups. Over 40 new lemmas, theorems, and corollaries feature, along with more than 70 additional exercises. Color adds a new dimension to figures throughout. The book is divided into three parts. The first part is concerned with hyperbolic geometry and discrete groups. The main results are the characterization of hyperbolic reflection groups and Euclidean crystallographic groups. The second part is devoted to the theory of hyperbolic manifolds. The main results are Mostow's rigidity theorem and the determination of the global geometry of hyperbolic manifolds of finite volume. The third part integrates the first two parts in a development of the theory of hyperbolic orbifolds. The main result is Poincaré's fundamental polyhedron theorem. The exposition is at the level of a second year graduate student with particular emphasis placed on readability and completeness of argument. After reading this book, the reader will have the necessary background to study the current research on hyperbolic manifolds. From reviews of the second edition: Designed to be useful as both textbook and a reference, this book renders a real service to the mathematical community by putting together the tools and prerequisites needed to enter the territory of Thurston's formidable theory of hyperbolic 3-manifolds [...] Every chapter is followed by historical notes, with attributions to the relevant literature, both of the originators of the idea present in the chapter and of modern presentation thereof. Victor V. Pambuccian, Zentralblatt MATH, Vol. 1106 (8), 2007. 
650 0 |a Geometry. 
650 0 |a Topology. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 1 4 |a Geometry.  |0 http://scigraph.springernature.com/things/product-market-codes/M21006 
650 2 4 |a Topology.  |0 http://scigraph.springernature.com/things/product-market-codes/M28000 
650 2 4 |a Topological Groups, Lie Groups.  |0 http://scigraph.springernature.com/things/product-market-codes/M11132 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030315962 
776 0 8 |i Printed edition:  |z 9783030315986 
776 0 8 |i Printed edition:  |z 9783030315993 
830 0 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 149 
856 4 0 |u https://doi.org/10.1007/978-3-030-31597-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)