Boundary Physics and Bulk-Boundary Correspondence in Topological Phases of Matter

This thesis extends our understanding of systems of independent electrons by developing a generalization of Bloch's Theorem which is applicable whenever translational symmetry is broken solely due to arbitrary boundary conditions. The thesis begins with a historical overview of topological cond...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Alase, Abhijeet (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Springer Theses, Recognizing Outstanding Ph.D. Research,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04155nam a2200553 4500
001 978-3-030-31960-1
003 DE-He213
005 20191120084846.0
007 cr nn 008mamaa
008 191120s2019 gw | s |||| 0|eng d
020 |a 9783030319601  |9 978-3-030-31960-1 
024 7 |a 10.1007/978-3-030-31960-1  |2 doi 
040 |d GrThAP 
050 4 |a QC176-176.9 
072 7 |a PNFS  |2 bicssc 
072 7 |a SCI077000  |2 bisacsh 
072 7 |a PNFS  |2 thema 
082 0 4 |a 530.41  |2 23 
100 1 |a Alase, Abhijeet.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Boundary Physics and Bulk-Boundary Correspondence in Topological Phases of Matter  |h [electronic resource] /  |c by Abhijeet Alase. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a XVII, 200 p. 23 illus., 19 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
505 0 |a Chapter1: Introduction -- Chapter2: Generalization of Bloch's theorem to systems with boundary -- Chapter3: Investigation of topological boundary states via generalized Bloch theorem -- Chapter4: Matrix factorization approach to bulk-boundary correspondence -- Chapter5: Mathematical foundations to the generalized Bloch theorem -- Chapter6: Summary and Outlook. 
520 |a This thesis extends our understanding of systems of independent electrons by developing a generalization of Bloch's Theorem which is applicable whenever translational symmetry is broken solely due to arbitrary boundary conditions. The thesis begins with a historical overview of topological condensed matter physics, placing the work in context, before introducing the generalized form of Bloch's Theorem. A cornerstone of electronic band structure and transport theory in crystalline matter, Bloch's Theorem is generalized via a reformulation of the diagonalization problem in terms of corner-modified block-Toeplitz matrices and, physically, by allowing the crystal momentum to take complex values. This formulation provides exact expressions for all the energy eigenvalues and eigenstates of the single-particle Hamiltonian. By precisely capturing the interplay between bulk and boundary properties, this affords an exact analysis of several prototypical models relevant to symmetry-protected topological phases of matter, including a characterization of zero-energy localized boundary excitations in both topological insulators and superconductors. Notably, in combination with suitable matrix factorization techniques, the generalized Bloch Hamiltonian is also shown to provide a natural starting point for a unified derivation of bulk-boundary correspondence for all symmetry classes in one dimension. 
650 0 |a Solid state physics. 
650 0 |a Phase transitions (Statistical physics). 
650 0 |a Mathematical physics. 
650 0 |a Physics. 
650 0 |a Semiconductors. 
650 1 4 |a Solid State Physics.  |0 http://scigraph.springernature.com/things/product-market-codes/P25013 
650 2 4 |a Phase Transitions and Multiphase Systems.  |0 http://scigraph.springernature.com/things/product-market-codes/P25099 
650 2 4 |a Mathematical Physics.  |0 http://scigraph.springernature.com/things/product-market-codes/M35000 
650 2 4 |a Mathematical Methods in Physics.  |0 http://scigraph.springernature.com/things/product-market-codes/P19013 
650 2 4 |a Semiconductors.  |0 http://scigraph.springernature.com/things/product-market-codes/P25150 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030319595 
776 0 8 |i Printed edition:  |z 9783030319618 
776 0 8 |i Printed edition:  |z 9783030319625 
830 0 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
856 4 0 |u https://doi.org/10.1007/978-3-030-31960-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)