The Large Flux Problem to the Navier-Stokes Equations Global Strong Solutions in Cylindrical Domains /

This monograph considers the motion of incompressible fluids described by the Navier-Stokes equations with large inflow and outflow, and proves the existence of global regular solutions without any restrictions on the magnitude of the initial velocity, the external force, or the flux. To accomplish...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Rencławowicz, Joanna (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Zajączkowski, Wojciech M. (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Birkhäuser, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Lecture Notes in Mathematical Fluid Mechanics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03775nam a2200505 4500
001 978-3-030-32330-1
003 DE-He213
005 20191210141425.0
007 cr nn 008mamaa
008 191209s2019 gw | s |||| 0|eng d
020 |a 9783030323301  |9 978-3-030-32330-1 
024 7 |a 10.1007/978-3-030-32330-1  |2 doi 
040 |d GrThAP 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
072 7 |a PBKJ  |2 thema 
082 0 4 |a 515.353  |2 23 
100 1 |a Rencławowicz, Joanna.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 4 |a The Large Flux Problem to the Navier-Stokes Equations  |h [electronic resource] :  |b Global Strong Solutions in Cylindrical Domains /  |c by Joanna Rencławowicz, Wojciech M. Zajączkowski. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2019. 
300 |a VI, 179 p. 3 illus., 1 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematical Fluid Mechanics,  |x 2510-1374 
505 0 |a Introduction -- Notation and auxiliary results -- Energy estimate: Global weak solutions -- Local estimates for regular solutions -- Global estimates for solutions to problem on (v, p) -- Global estimates for solutions to problem on (h, q) -- Estimates for ht -- Auxiliary results: Estimates for (v, p) -- Auxiliary results: Estimates for (h, q) -- The Neumann problem (3.6) in L2-weighted spaces -- The Neumann problem (3.6) in Lp-weighted spaces -- Existence of solutions (v, p) and (h, q). 
520 |a This monograph considers the motion of incompressible fluids described by the Navier-Stokes equations with large inflow and outflow, and proves the existence of global regular solutions without any restrictions on the magnitude of the initial velocity, the external force, or the flux. To accomplish this, some assumptions are necessary: The flux is close to homogeneous, and the initial velocity and the external force do not change too much along the axis of the cylinder. This is achieved by utilizing a sophisticated method of deriving energy type estimates for weak solutions and global estimates for regular solutions-an approach that is wholly unique within the existing literature on the Navier-Stokes equations. To demonstrate these results, three main steps are followed: first, the existence of weak solutions is shown; next, the conditions guaranteeing the regularity of weak solutions are presented; and, lastly, global regular solutions are proven. This volume is ideal for mathematicians whose work involves the Navier-Stokes equations, and, more broadly, researchers studying fluid mechanics. 
650 0 |a Partial differential equations. 
650 0 |a Fluids. 
650 0 |a Functional analysis. 
650 1 4 |a Partial Differential Equations.  |0 http://scigraph.springernature.com/things/product-market-codes/M12155 
650 2 4 |a Fluid- and Aerodynamics.  |0 http://scigraph.springernature.com/things/product-market-codes/P21026 
650 2 4 |a Functional Analysis.  |0 http://scigraph.springernature.com/things/product-market-codes/M12066 
700 1 |a Zajączkowski, Wojciech M.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030323295 
776 0 8 |i Printed edition:  |z 9783030323318 
830 0 |a Lecture Notes in Mathematical Fluid Mechanics,  |x 2510-1374 
856 4 0 |u https://doi.org/10.1007/978-3-030-32330-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)