Possibility Theory for the Design of Information Fusion Systems

This practical guidebook describes the basic concepts, the mathematical developments, and the engineering methodologies for exploiting possibility theory for the computer-based design of an information fusion system where the goal is decision support for industries in smart ICT (information and comm...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Solaiman, Basel (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Bossé, Éloi (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Information Fusion and Data Science,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04535nam a2200601 4500
001 978-3-030-32853-5
003 DE-He213
005 20191226053120.0
007 cr nn 008mamaa
008 191226s2019 gw | s |||| 0|eng d
020 |a 9783030328535  |9 978-3-030-32853-5 
024 7 |a 10.1007/978-3-030-32853-5  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Solaiman, Basel.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Possibility Theory for the Design of Information Fusion Systems  |h [electronic resource] /  |c by Basel Solaiman, Éloi Bossé. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a X, 288 p. 122 illus., 87 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Information Fusion and Data Science,  |x 2510-1528 
505 0 |a Chapter1: Introduction to possibility theory -- Chapter2: Fundamental possibilistic concepts -- Chapter3: Joint Possibility Distributions and Conditioning -- Chapter4: Possibilistic Similarity Measures -- Chapter5: The interrelated uncertainty modeling theories -- Chapter6: Possibility integral -- Chapter7: Fusion operators and decision-making criteria in the framework of possibility theory -- Chapter8: Possibilistic concepts applied to soft pattern classification -- Chapter9: The use of possibility theory in the design of information fusion systems. 
520 |a This practical guidebook describes the basic concepts, the mathematical developments, and the engineering methodologies for exploiting possibility theory for the computer-based design of an information fusion system where the goal is decision support for industries in smart ICT (information and communications technologies). This exploitation of possibility theory improves upon probability theory, complements Dempster-Shafer theory, and fills an important gap in this era of Big Data and Internet of Things. The book discusses fundamental possibilistic concepts: distribution, necessity measure, possibility measure, joint distribution, conditioning, distances, similarity measures, possibilistic decisions, fuzzy sets, fuzzy measures and integrals, and finally, the interrelated theories of uncertainty..uncertainty. These topics form an essential tour of the mathematical tools needed for the latter chapters of the book. These chapters present applications related to decision-making and pattern recognition schemes, and finally, a concluding chapter on the use of possibility theory in the overall challenging design of an information fusion system. This book will appeal to researchers and professionals in the field of information fusion and analytics, information and knowledge processing, smart ICT, and decision support systems. 
650 0 |a Probabilities. 
650 0 |a Statistics . 
650 0 |a Mathematical statistics. 
650 0 |a Sociophysics. 
650 0 |a Econophysics. 
650 0 |a Electrical engineering. 
650 1 4 |a Probability Theory and Stochastic Processes.  |0 http://scigraph.springernature.com/things/product-market-codes/M27004 
650 2 4 |a Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences.  |0 http://scigraph.springernature.com/things/product-market-codes/S17020 
650 2 4 |a Probability and Statistics in Computer Science.  |0 http://scigraph.springernature.com/things/product-market-codes/I17036 
650 2 4 |a Data-driven Science, Modeling and Theory Building.  |0 http://scigraph.springernature.com/things/product-market-codes/P33030 
650 2 4 |a Communications Engineering, Networks.  |0 http://scigraph.springernature.com/things/product-market-codes/T24035 
700 1 |a Bossé, Éloi.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030328528 
776 0 8 |i Printed edition:  |z 9783030328542 
776 0 8 |i Printed edition:  |z 9783030328559 
830 0 |a Information Fusion and Data Science,  |x 2510-1528 
856 4 0 |u https://doi.org/10.1007/978-3-030-32853-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)