Triangulated Categories of Mixed Motives

The primary aim of this monograph is to achieve part of Beilinson's program on mixed motives using Voevodsky's theories of $\mathbb{A}^1$-homotopy and motivic complexes. Historically, this book is the first to give a complete construction of a triangulated category of mixed motives with ra...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Cisinski, Denis-Charles (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Déglise, Frédéric (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Springer Monographs in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04420nam a2200529 4500
001 978-3-030-33242-6
003 DE-He213
005 20191109141528.0
007 cr nn 008mamaa
008 191109s2019 gw | s |||| 0|eng d
020 |a 9783030332426  |9 978-3-030-33242-6 
024 7 |a 10.1007/978-3-030-33242-6  |2 doi 
040 |d GrThAP 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
072 7 |a PBMW  |2 thema 
082 0 4 |a 516.35  |2 23 
100 1 |a Cisinski, Denis-Charles.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Triangulated Categories of Mixed Motives  |h [electronic resource] /  |c by Denis-Charles Cisinski, Frédéric Déglise. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a XLII, 406 p. 1 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Monographs in Mathematics,  |x 1439-7382 
505 0 |a Introduction -- Part I Fibred categories and the six functors formalism -- Part II Construction of fibred categories -- Part III Motivic complexes and relative cycles -- Part IV Beilinson motives and algebraic K-theory -- References -- Index -- Notation -- Index of properties of P-fibred triangulated categories. 
520 |a The primary aim of this monograph is to achieve part of Beilinson's program on mixed motives using Voevodsky's theories of $\mathbb{A}^1$-homotopy and motivic complexes. Historically, this book is the first to give a complete construction of a triangulated category of mixed motives with rational coefficients satisfying the full Grothendieck six functors formalism as well as fulfilling Beilinson's program, in particular the interpretation of rational higher Chow groups as extension groups. Apart from Voevodsky's entire work and Grothendieck's SGA4, our main sources are Gabber's work on étale cohomology and Ayoub's solution to Voevodsky's cross functors theory. We also thoroughly develop the theory of motivic complexes with integral coefficients over general bases, along the lines of Suslin and Voevodsky. Besides this achievement, this volume provides a complete toolkit for the study of systems of coefficients satisfying Grothendieck' six functors formalism, including Grothendieck-Verdier duality. It gives a systematic account of cohomological descent theory with an emphasis on h-descent. It formalizes morphisms of coefficient systems with a view towards realization functors and comparison results. The latter allows to understand the polymorphic nature of rational mixed motives. They can be characterized by one of the following properties: existence of transfers, universality of rational algebraic K-theory, h-descent, étale descent, orientation theory. This monograph is a longstanding research work of the two authors. The first three parts are written in a self-contained manner and could be accessible to graduate students with a background in algebraic geometry and homotopy theory. It is designed to be a reference work and could also be useful outside motivic homotopy theory. The last part, containing the most innovative results, assumes some knowledge of motivic homotopy theory, although precise statements and references are given. 
650 0 |a Algebraic geometry. 
650 0 |a Category theory (Mathematics). 
650 0 |a Homological algebra. 
650 0 |a K-theory. 
650 1 4 |a Algebraic Geometry.  |0 http://scigraph.springernature.com/things/product-market-codes/M11019 
650 2 4 |a Category Theory, Homological Algebra.  |0 http://scigraph.springernature.com/things/product-market-codes/M11035 
650 2 4 |a K-Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/M11086 
700 1 |a Déglise, Frédéric.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030332419 
776 0 8 |i Printed edition:  |z 9783030332433 
776 0 8 |i Printed edition:  |z 9783030332440 
830 0 |a Springer Monographs in Mathematics,  |x 1439-7382 
856 4 0 |u https://doi.org/10.1007/978-3-030-33242-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)