Machine Learning for Medical Image Reconstruction Second International Workshop, MLMIR 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019, Proceedings /

This book constitutes the refereed proceedings of the Second International Workshop on Machine Learning for Medical Reconstruction, MLMIR 2019, held in conjunction with MICCAI 2019, in Shenzhen, China, in October 2019. The 24 full papers presented were carefully reviewed and selected from 32 submiss...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Knoll, Florian (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Maier, Andreas (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Rueckert, Daniel (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Ye, Jong Chul (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Image Processing, Computer Vision, Pattern Recognition, and Graphics ; 11905
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 06004nam a2200613 4500
001 978-3-030-33843-5
003 DE-He213
005 20191028192539.0
007 cr nn 008mamaa
008 191023s2019 gw | s |||| 0|eng d
020 |a 9783030338435  |9 978-3-030-33843-5 
024 7 |a 10.1007/978-3-030-33843-5  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Machine Learning for Medical Image Reconstruction  |h [electronic resource] :  |b Second International Workshop, MLMIR 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019, Proceedings /  |c edited by Florian Knoll, Andreas Maier, Daniel Rueckert, Jong Chul Ye. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a IX, 266 p. 128 illus., 94 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Image Processing, Computer Vision, Pattern Recognition, and Graphics ;  |v 11905 
505 0 |a Deep Learning for Magnetic Resonance Imaging -- Recon-GLGAN: A Global-Local context based Generative Adversarial Network for MRI Reconstruction- Self-supervised Recurrent Neural Network for 4D Abdominal and In-utero MR Imaging -- Fast Dynamic Perfusion and Angiography Reconstruction using an end-to-end 3D Convolutional Neural Network -- APIR-Net: Autocalibrated Parallel Imaging Reconstruction using a Neural Network -- Accelerated MRI Reconstruction with Dual-domain Generative Adversarial Network -- Deep Learning for Low-Field to High-Field MR: Image Quality Transfer with Probabilistic Decimation Simulator -- Joint Multi-Anatomy Training of a Variational Network for Reconstruction of Accelerated Magnetic Resonance Image Acquisitions -- Modeling and Analysis Brain Development via Discriminative Dictionary Learning -- Deep Learning for Computed Tomography -- Virtual Thin Slice: 3D Conditional GAN-based Super-resolution for CT Slice Interval -- Data Consistent Artifact Reduction for Limited Angle Tomography with Deep Learning Prior -- Measuring CT Reconstruction Quality with Deep Convolutional Neural Networks -- Deep Learning based Metal Inpainting in the Projection Domain: Initial Results -- Deep Learning for General Image Reconstruction -- Flexible Conditional Image Generation of Missing Data with Learned Mental Maps -- Spatiotemporal PET reconstruction using ML-EM with learned diffeomorphic deformation -- Stain Style Transfer using Transitive Adversarial Networks -- Blind Deconvolution Microscopy Using Cycle Consistent CNN with Explicit PSF Layer -- Deep Learning based approach to quantification of PET tracer uptake in small tumors -- Task-GAN: Improving Generative Adversarial Network for Image Reconstruction -- Gamma Source Location Learning from Synthetic Multi-Pinhole Collimator Data -- Neural Denoising of Ultra-Low Dose Mammography -- Image Reconstruction in a Manifold of Image Patches: Application to Whole-fetus Ultrasound Imaging -- Image Super Resolution via Bilinear Pooling: Application to Confocal Endomicroscopy -- TPSDicyc: Improved Deformation Invariant Cross-domain Medical Image Synthesis -- PredictUS: A Method to Extend the Resolution-Precision Trade-off in Quantitative Ultrasound Image Reconstruction. 
520 |a This book constitutes the refereed proceedings of the Second International Workshop on Machine Learning for Medical Reconstruction, MLMIR 2019, held in conjunction with MICCAI 2019, in Shenzhen, China, in October 2019. The 24 full papers presented were carefully reviewed and selected from 32 submissions. The papers are organized in the following topical sections: deep learning for magnetic resonance imaging; deep learning for computed tomography; and deep learning for general image reconstruction. 
650 0 |a Artificial intelligence. 
650 0 |a Education-Data processing. 
650 0 |a Application software. 
650 0 |a Bioinformatics. 
650 0 |a Optical data processing. 
650 0 |a Health informatics. 
650 1 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Computers and Education.  |0 http://scigraph.springernature.com/things/product-market-codes/I24032 
650 2 4 |a Computer Appl. in Social and Behavioral Sciences.  |0 http://scigraph.springernature.com/things/product-market-codes/I23028 
650 2 4 |a Computational Biology/Bioinformatics.  |0 http://scigraph.springernature.com/things/product-market-codes/I23050 
650 2 4 |a Image Processing and Computer Vision.  |0 http://scigraph.springernature.com/things/product-market-codes/I22021 
650 2 4 |a Health Informatics.  |0 http://scigraph.springernature.com/things/product-market-codes/I23060 
700 1 |a Knoll, Florian.  |e editor.  |0 (orcid)0000-0001-5357-8656  |1 https://orcid.org/0000-0001-5357-8656  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Maier, Andreas.  |e editor.  |0 (orcid)0000-0002-9550-5284  |1 https://orcid.org/0000-0002-9550-5284  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Rueckert, Daniel.  |e editor.  |0 (orcid)0000-0002-5683-5889  |1 https://orcid.org/0000-0002-5683-5889  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Ye, Jong Chul.  |e editor.  |0 (orcid)0000-0001-9763-9609  |1 https://orcid.org/0000-0001-9763-9609  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030338428 
776 0 8 |i Printed edition:  |z 9783030338442 
830 0 |a Image Processing, Computer Vision, Pattern Recognition, and Graphics ;  |v 11905 
856 4 0 |u https://doi.org/10.1007/978-3-030-33843-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
912 |a ZDB-2-LNC 
950 |a Computer Science (Springer-11645)