Complex Analysis, Riemann Surfaces and Integrable Systems

This book is devoted to classical and modern achievements in complex analysis. In order to benefit most from it, a first-year university background is sufficient; all other statements and proofs are provided. We begin with a brief but fairly complete course on the theory of holomorphic, meromorphic,...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Natanzon, Sergey M. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Moscow Lectures, 3
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03482nam a2200469 4500
001 978-3-030-34640-9
003 DE-He213
005 20200103021958.0
007 cr nn 008mamaa
008 200103s2019 gw | s |||| 0|eng d
020 |a 9783030346409  |9 978-3-030-34640-9 
024 7 |a 10.1007/978-3-030-34640-9  |2 doi 
040 |d GrThAP 
050 4 |a QA299.6-433 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBK  |2 thema 
082 0 4 |a 515  |2 23 
100 1 |a Natanzon, Sergey M.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Complex Analysis, Riemann Surfaces and Integrable Systems  |h [electronic resource] /  |c by Sergey M. Natanzon. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a XIII, 139 p. 22 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Moscow Lectures,  |x 2522-0314 ;  |v 3 
505 0 |a Holomorphic functions -- Meromorphic functions -- Riemann's theorem -- Harmonic functions -- Riemann surfaces and their modules -- Compact Riemann surfaces and algebraic curves -- Riemann-Roch theorem and theta functions -- Integrable Systems -- The formula for the conformal mapping of an arbitrary domain into the unit disk. 
520 |a This book is devoted to classical and modern achievements in complex analysis. In order to benefit most from it, a first-year university background is sufficient; all other statements and proofs are provided. We begin with a brief but fairly complete course on the theory of holomorphic, meromorphic, and harmonic functions. We then present a uniformization theory, and discuss a representation of the moduli space of Riemann surfaces of a fixed topological type as a factor space of a contracted space by a discrete group. Next, we consider compact Riemann surfaces and prove the classical theorems of Riemann-Roch, Abel, Weierstrass, etc. We also construct theta functions that are very important for a range of applications. After that, we turn to modern applications of this theory. First, we build the (important for mathematics and mathematical physics) Kadomtsev-Petviashvili hierarchy and use validated results to arrive at important solutions to these differential equations. We subsequently use the theory of harmonic functions and the theory of differential hierarchies to explicitly construct a conformal mapping that translates an arbitrary contractible domain into a standard disk - a classical problem that has important applications in hydrodynamics, gas dynamics, etc. The book is based on numerous lecture courses given by the author at the Independent University of Moscow and at the Mathematics Department of the Higher School of Economics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 1 4 |a Analysis.  |0 http://scigraph.springernature.com/things/product-market-codes/M12007 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030346393 
776 0 8 |i Printed edition:  |z 9783030346416 
776 0 8 |i Printed edition:  |z 9783030346423 
830 0 |a Moscow Lectures,  |x 2522-0314 ;  |v 3 
856 4 0 |u https://doi.org/10.1007/978-3-030-34640-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)