Tensor Spaces and Numerical Tensor Calculus

Special numerical techniques are already needed to deal with n × n matrices for large n. Tensor data are of size n × n ×...× n=nd, where nd exceeds the computer memory by far. They appear for problems of high spatial dimensions. Since standard methods fail, a particular tensor calculus is needed to...

Full description

Bibliographic Details
Main Author: Hackbusch, Wolfgang (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2019.
Edition:2nd ed. 2019.
Series:Springer Series in Computational Mathematics, 56
Subjects:
Online Access:Full Text via HEAL-Link
LEADER 03709nam a2200505 4500
001 978-3-030-35554-8
003 DE-He213
005 20191216182413.0
007 cr nn 008mamaa
008 191216s2019 gw | s |||| 0|eng d
020 |a 9783030355548  |9 978-3-030-35554-8 
024 7 |a 10.1007/978-3-030-35554-8  |2 doi 
040 |d GrThAP 
050 4 |a QA297-299.4 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT021000  |2 bisacsh 
072 7 |a PBKS  |2 thema 
082 0 4 |a 518  |2 23 
100 1 |a Hackbusch, Wolfgang.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Tensor Spaces and Numerical Tensor Calculus  |h [electronic resource] /  |c by Wolfgang Hackbusch. 
250 |a 2nd ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a XXVIII, 605 p. 8 illus., 3 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Computational Mathematics,  |x 0179-3632 ;  |v 56 
505 0 |a Part I: Algebraic Tensors -- 1 Introduction -- 2 Matrix Tools -- 3 Algebraic Foundations of Tensor Spaces -- Part II: Functional Analysis of Tensor Spaces -- 4 Banach Tensor Spaces -- 5 General Techniques -- 6 Minimal Subspaces -- Part III: Numerical Treatment -- 7 r-Term Representation -- 8 Tensor Subspace Represenation -- 9 r-Term Approximation -- 10 Tensor Subspace Approximation -- 11 Hierarchical Tensor Representation -- 12 Matrix Product Systems -- 13 Tensor Operations -- 14 Tensorisation -- 15 Multivariate Cross Approximation -- 16 Applications to Elliptic Partial Differential Equations -- 17 Miscellaneous Topics. 
520 |a Special numerical techniques are already needed to deal with n × n matrices for large n. Tensor data are of size n × n ×...× n=nd, where nd exceeds the computer memory by far. They appear for problems of high spatial dimensions. Since standard methods fail, a particular tensor calculus is needed to treat such problems. This monograph describes the methods by which tensors can be practically treated and shows how numerical operations can be performed. Applications include problems from quantum chemistry, approximation of multivariate functions, solution of partial differential equations, for example with stochastic coefficients, and more. In addition to containing corrections of the unavoidable misprints, this revised second edition includes new parts ranging from single additional statements to new subchapters. The book is mainly addressed to numerical mathematicians and researchers working with high-dimensional data. It also touches problems related to Geometric Algebra. 
650 0 |a Numerical analysis. 
650 0 |a Chemistry, Physical and theoretical. 
650 0 |a Mathematical physics. 
650 1 4 |a Numerical Analysis.  |0 http://scigraph.springernature.com/things/product-market-codes/M14050 
650 2 4 |a Theoretical and Computational Chemistry.  |0 http://scigraph.springernature.com/things/product-market-codes/C25007 
650 2 4 |a Theoretical, Mathematical and Computational Physics.  |0 http://scigraph.springernature.com/things/product-market-codes/P19005 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783030355531 
776 0 8 |i Printed edition:  |z 9783030355555 
776 0 8 |i Printed edition:  |z 9783030355562 
830 0 |a Springer Series in Computational Mathematics,  |x 0179-3632 ;  |v 56 
856 4 0 |u https://doi.org/10.1007/978-3-030-35554-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)