Flag-transitive Steiner Designs

The characterization of combinatorial or geometric structures in terms of their groups of automorphisms has attracted considerable interest in the last decades and is now commonly viewed as a natural generalization of Felix Klein’s Erlangen program(1872).Inaddition,especiallyfor?nitestructures,impor...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Huber, Michael (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Birkhäuser Basel, 2009.
Σειρά:Frontiers in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03657nam a22005055i 4500
001 978-3-0346-0002-6
003 DE-He213
005 20151204151745.0
007 cr nn 008mamaa
008 100301s2009 sz | s |||| 0|eng d
020 |a 9783034600026  |9 978-3-0346-0002-6 
024 7 |a 10.1007/978-3-0346-0002-6  |2 doi 
040 |d GrThAP 
050 4 |a QA639.5-640.7 
050 4 |a QA640.7-640.77 
072 7 |a PBMW  |2 bicssc 
072 7 |a PBD  |2 bicssc 
072 7 |a MAT012020  |2 bisacsh 
072 7 |a MAT008000  |2 bisacsh 
082 0 4 |a 516.1  |2 23 
100 1 |a Huber, Michael.  |e author. 
245 1 0 |a Flag-transitive Steiner Designs  |h [electronic resource] /  |c by Michael Huber. 
264 1 |a Basel :  |b Birkhäuser Basel,  |c 2009. 
300 |a IX, 125 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Frontiers in Mathematics,  |x 1660-8046 
505 0 |a Incidence Structures and Steiner Designs -- Permutation Groups and Group Actions -- Number Theoretical Tools -- Highly Symmetric Steiner Designs -- A Census of Highly Symmetric Steiner Designs -- The Classification of Flag-transitive Steiner Quadruple Systems -- The Classification of Flag-transitive Steiner 3-Designs -- The Classification of Flag-transitive Steiner 4-Designs -- The Classification of Flag-transitive Steiner 5-Designs -- The Non-Existence of Flag-transitive Steiner 6-Designs. 
520 |a The characterization of combinatorial or geometric structures in terms of their groups of automorphisms has attracted considerable interest in the last decades and is now commonly viewed as a natural generalization of Felix Klein’s Erlangen program(1872).Inaddition,especiallyfor?nitestructures,importantapplications to practical topics such as design theory, coding theory and cryptography have made the ?eld even more attractive. The subject matter of this research monograph is the study and class- cation of ?ag-transitive Steiner designs, that is, combinatorial t-(v,k,1) designs which admit a group of automorphisms acting transitively on incident point-block pairs. As a consequence of the classi?cation of the ?nite simple groups, it has been possible in recent years to characterize Steiner t-designs, mainly for t=2,adm- ting groups of automorphisms with su?ciently strong symmetry properties. For Steiner 2-designs, arguably the most general results have been the classi?cation of all point 2-transitive Steiner 2-designs in 1985 by W. M. Kantor, and the almost complete determination of all ?ag-transitive Steiner 2-designs announced in 1990 byF.Buekenhout,A.Delandtsheer,J.Doyen,P.B.Kleidman,M.W.Liebeck, and J. Saxl. However, despite the classi?cation of the ?nite simple groups, for Steiner t-designs witht> 2 most of the characterizations of these types have remained long-standing challenging problems. Speci?cally, the determination of all ?- transitive Steiner t-designs with 3? t? 6 has been of particular interest and object of research for more than 40 years. 
650 0 |a Mathematics. 
650 0 |a Convex geometry. 
650 0 |a Discrete geometry. 
650 0 |a Combinatorics. 
650 1 4 |a Mathematics. 
650 2 4 |a Convex and Discrete Geometry. 
650 2 4 |a Combinatorics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783034600019 
830 0 |a Frontiers in Mathematics,  |x 1660-8046 
856 4 0 |u http://dx.doi.org/10.1007/978-3-0346-0002-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)