Applied Pseudoanalytic Function Theory

Pseudoanalytic function theory generalizes and preserves many crucial features of complex analytic function theory. The Cauchy-Riemann system is replaced by a much more general first-order system with variable coefficients which turns out to be closely related to important equations of mathematical...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Kravchenko, Vladislav V. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Birkhäuser Basel, 2009.
Σειρά:Frontiers in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Pseudoanalytic Function Theory and Second-order Elliptic Equations
  • Definitions and Results from Bers’ Theory
  • Solutions of Second-order Elliptic Equations as Real Components of Complex Pseudoanalytic Functions
  • Formal Powers
  • Cauchy’s Integral Formula
  • Complex Riccati Equation
  • Applications to Sturm-Liouville Theory
  • A Representation for Solutions of the Sturm-Liouville Equation
  • Spectral Problems and Darboux Transformation
  • Applications to Real First-order Systems
  • Beltrami Fields
  • Static Maxwell System in Axially Symmetric Inhomogeneous Media
  • Hyperbolic Pseudoanalytic Functions
  • Hyperbolic Numbers and Analytic Functions
  • Hyperbolic Pseudoanalytic Functions
  • Relationship between Hyperbolic Pseudoanalytic Functions and Solutions of the Klein-Gordon Equation
  • Bicomplex and Biquaternionic Pseudoanalytic Functions and Applications
  • The Dirac Equation
  • Complex Second-order Elliptic Equations and Bicomplex Pseudoanalytic Functions
  • Multidimensional Second-order Equations.