Applied Pseudoanalytic Function Theory
Pseudoanalytic function theory generalizes and preserves many crucial features of complex analytic function theory. The Cauchy-Riemann system is replaced by a much more general first-order system with variable coefficients which turns out to be closely related to important equations of mathematical...
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Basel :
Birkhäuser Basel,
2009.
|
Σειρά: | Frontiers in Mathematics,
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Pseudoanalytic Function Theory and Second-order Elliptic Equations
- Definitions and Results from Bers’ Theory
- Solutions of Second-order Elliptic Equations as Real Components of Complex Pseudoanalytic Functions
- Formal Powers
- Cauchy’s Integral Formula
- Complex Riccati Equation
- Applications to Sturm-Liouville Theory
- A Representation for Solutions of the Sturm-Liouville Equation
- Spectral Problems and Darboux Transformation
- Applications to Real First-order Systems
- Beltrami Fields
- Static Maxwell System in Axially Symmetric Inhomogeneous Media
- Hyperbolic Pseudoanalytic Functions
- Hyperbolic Numbers and Analytic Functions
- Hyperbolic Pseudoanalytic Functions
- Relationship between Hyperbolic Pseudoanalytic Functions and Solutions of the Klein-Gordon Equation
- Bicomplex and Biquaternionic Pseudoanalytic Functions and Applications
- The Dirac Equation
- Complex Second-order Elliptic Equations and Bicomplex Pseudoanalytic Functions
- Multidimensional Second-order Equations.