The Hardy Space of a Slit Domain

If H is a Hilbert space and T : H ? H is a continous linear operator, a natural question to ask is: What are the closed subspaces M of H for which T M ? M? Of course the famous invariant subspace problem asks whether or not T has any non-trivial invariant subspaces. This monograph is part of a long...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Aleman, Alexandru (Συγγραφέας), Ross, William T. (Συγγραφέας), Feldman, Nathan S. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Birkhäuser Basel, 2009.
Σειρά:Frontiers in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02976nam a22004575i 4500
001 978-3-0346-0098-9
003 DE-He213
005 20140518130127.0
007 cr nn 008mamaa
008 100301s2009 sz | s |||| 0|eng d
020 |a 9783034600989  |9 978-3-0346-0098-9 
024 7 |a 10.1007/978-3-0346-0098-9  |2 doi 
040 |d GrThAP 
050 4 |a QA331-355 
072 7 |a PBKD  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.9  |2 23 
100 1 |a Aleman, Alexandru.  |e author. 
245 1 4 |a The Hardy Space of a Slit Domain  |h [electronic resource] /  |c by Alexandru Aleman, William T. Ross, Nathan S. Feldman. 
264 1 |a Basel :  |b Birkhäuser Basel,  |c 2009. 
300 |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Frontiers in Mathematics,  |x 1660-8046 
505 0 |a Preliminaries -- Nearly invariant subspaces -- Nearly invariant and the backward shift -- Nearly invariant and de Branges spaces -- Invariant subspaces of the slit disk -- Cyclic invariant subspaces -- The essential spectrum -- Other applications -- Domains with several slits -- Final thoughts. 
520 |a If H is a Hilbert space and T : H ? H is a continous linear operator, a natural question to ask is: What are the closed subspaces M of H for which T M ? M? Of course the famous invariant subspace problem asks whether or not T has any non-trivial invariant subspaces. This monograph is part of a long line of study of the invariant subspaces of the operator T = M (multiplication by the independent variable z, i. e. , M f = zf )on a z z Hilbert space of analytic functions on a bounded domain G in C. The characterization of these M -invariant subspaces is particularly interesting since it entails both the properties z of the functions inside the domain G, their zero sets for example, as well as the behavior of the functions near the boundary of G. The operator M is not only interesting in its z own right but often serves as a model operator for certain classes of linear operators. By this we mean that given an operator T on H with certain properties (certain subnormal operators or two-isometric operators with the right spectral properties, etc. ), there is a Hilbert space of analytic functions on a domain G for which T is unitarity equivalent to M . 
650 0 |a Mathematics. 
650 0 |a Functions of complex variables. 
650 1 4 |a Mathematics. 
650 2 4 |a Functions of a Complex Variable. 
700 1 |a Ross, William T.  |e author. 
700 1 |a Feldman, Nathan S.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783034600972 
830 0 |a Frontiers in Mathematics,  |x 1660-8046 
856 4 0 |u http://dx.doi.org/10.1007/978-3-0346-0098-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)