The Geometry of Filtering

Filtering is the science of nding the law of a process given a partial observation of it. The main objects we study here are di usion processes. These are naturally associated with second-order linear di erential operators which are semi-elliptic and so introduce a possibly degenerate Riemannian str...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Elworthy, K. David (Συγγραφέας), Le Jan, Yves (Συγγραφέας), Li, Xue-Mei (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Springer Basel, 2010.
Σειρά:Frontiers in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03603nam a22005535i 4500
001 978-3-0346-0176-4
003 DE-He213
005 20151204162657.0
007 cr nn 008mamaa
008 101127s2010 sz | s |||| 0|eng d
020 |a 9783034601764  |9 978-3-0346-0176-4 
024 7 |a 10.1007/978-3-0346-0176-4  |2 doi 
040 |d GrThAP 
050 4 |a QA297-299.4 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT021000  |2 bisacsh 
072 7 |a MAT006000  |2 bisacsh 
082 0 4 |a 518  |2 23 
100 1 |a Elworthy, K. David.  |e author. 
245 1 4 |a The Geometry of Filtering  |h [electronic resource] /  |c by K. David Elworthy, Yves Le Jan, Xue-Mei Li. 
264 1 |a Basel :  |b Springer Basel,  |c 2010. 
300 |a XI, 169 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Frontiers in Mathematics,  |x 1660-8046 
505 0 |a Diffusion Operators -- Decomposition of Diffusion Operators -- Equivariant Diffusions on Principal Bundles -- Projectible Diffusion Processes and Markovian Filtering -- Filtering with non-Markovian Observations -- The Commutation Property -- Example: Riemannian Submersions and Symmetric Spaces -- Example: Stochastic Flows -- Appendices. 
520 |a Filtering is the science of nding the law of a process given a partial observation of it. The main objects we study here are di usion processes. These are naturally associated with second-order linear di erential operators which are semi-elliptic and so introduce a possibly degenerate Riemannian structure on the state space. In fact, much of what we discuss is simply about two such operators intertwined by a smooth map, the \projection from the state space to the observations space", and does not involve any stochastic analysis. From the point of view of stochastic processes, our purpose is to present and to study the underlying geometric structure which allows us to perform the ltering in a Markovian framework with the resulting conditional law being that of a Markov process which is time inhomogeneous in general. This geometry is determined by the symbol of the operator on the state space which projects to a symbol on the observation space. The projectible symbol induces a (possibly non-linear and partially de ned) connection which lifts the observation process to the state space and gives a decomposition of the operator on the state space and of the noise. As is standard we can recover the classical ltering theory in which the observations are not usually Markovian by application of the Girsanov- Maruyama-Cameron-Martin Theorem. This structure we have is examined in relation to a number of geometrical topics. 
650 0 |a Mathematics. 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
650 0 |a Numerical analysis. 
650 0 |a Differential geometry. 
650 0 |a Probabilities. 
650 1 4 |a Mathematics. 
650 2 4 |a Numerical Analysis. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Global Analysis and Analysis on Manifolds. 
700 1 |a Le Jan, Yves.  |e author. 
700 1 |a Li, Xue-Mei.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783034601757 
830 0 |a Frontiers in Mathematics,  |x 1660-8046 
856 4 0 |u http://dx.doi.org/10.1007/978-3-0346-0176-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)