Simplicial Homotopy Theory

Since the beginning of the modern era of algebraic topology, simplicial methods have been used systematically and effectively for both computation and basic theory. With the development of Quillen's concept of a closed model category and, in particular, a simplicial model category, this collect...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Goerss, Paul G. (Συγγραφέας), Jardine, John F. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Birkhäuser Basel, 2009.
Σειρά:Modern Birkhäuser Classics
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03724nam a22004335i 4500
001 978-3-0346-0189-4
003 DE-He213
005 20150520190544.0
007 cr nn 008mamaa
008 100301s2009 sz | s |||| 0|eng d
020 |a 9783034601894  |9 978-3-0346-0189-4 
024 7 |a 10.1007/978-3-0346-0189-4  |2 doi 
040 |d GrThAP 
050 4 |a QA1-939 
072 7 |a PB  |2 bicssc 
072 7 |a MAT000000  |2 bisacsh 
082 0 4 |a 510  |2 23 
100 1 |a Goerss, Paul G.  |e author. 
245 1 0 |a Simplicial Homotopy Theory  |h [electronic resource] /  |c by Paul G. Goerss, John F. Jardine. 
264 1 |a Basel :  |b Birkhäuser Basel,  |c 2009. 
300 |a XVI, 510 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Modern Birkhäuser Classics 
505 0 |a Simplicial sets -- Model Categories -- Classical results and constructions -- Bisimplicial sets -- Simplicial groups -- The homotopy theory of towers -- Reedy model categories -- Cosimplicial spaces: applications -- Simplicial functors and homotopy coherence -- Localization. 
520 |a Since the beginning of the modern era of algebraic topology, simplicial methods have been used systematically and effectively for both computation and basic theory. With the development of Quillen's concept of a closed model category and, in particular, a simplicial model category, this collection of methods has become the primary way to describe non-abelian homological algebra and to address homotopy-theoretical issues in a variety of fields, including algebraic K-theory. This book supplies a modern exposition of these ideas, emphasizing model category theoretical techniques. Discussed here are the homotopy theory of simplicial sets, and other basic topics such as simplicial groups, Postnikov towers, and bisimplicial sets. The more advanced material includes homotopy limits and colimits, localization with respect to a map and with respect to a homology theory, cosimplicial spaces, and homotopy coherence. Interspersed throughout are many results and ideas well-known to experts, but uncollected in the literature. Intended for second-year graduate students and beyond, this book introduces many of the basic tools of modern homotopy theory. An extensive background in topology is not assumed. Reviews: "… a book filling an obvious gap in the literature and the authors have done an excellent job on it. No monograph or expository paper has been published on this topic in the last twenty-eight years." - Analele Universitatii din Timisoara "… is clearly presented and a brief summary preceding every chapter is useful to the reader. The book should prove enlightening to a broad range of readers including prospective students and researchers who want to apply simplicial techniques for whatever reason." - Zentralblatt MATH "… they succeed. The book is an excellent account of simplicial homotopy theory from a modern point of view […] The book is well written. […] The book can be highly recommended to anybody who wants to learn and to apply simplicial techniques and/or the theory of (simplicial) closed model categories." - Mathematical Reviews. 
650 0 |a Mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematics, general. 
700 1 |a Jardine, John F.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783034601887 
830 0 |a Modern Birkhäuser Classics 
856 4 0 |u http://dx.doi.org/10.1007/978-3-0346-0189-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)