Mean Curvature Flow and Isoperimetric Inequalities

Geometric flows have many applications in physics and geometry. The mean curvature flow occurs in the description of the interface evolution in certain physical models. This is related to the property that such a flow is the gradient flow of the area functional and therefore appears naturally in pro...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Ritoré, Manuel (Συγγραφέας), Sinestrari, Carlo (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Birkhäuser Basel, 2010.
Σειρά:Advanced Courses in Mathematics — CRM Barcelona, Centre de Recerca Matemàtica
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03305nam a22004815i 4500
001 978-3-0346-0213-6
003 DE-He213
005 20151204173611.0
007 cr nn 008mamaa
008 100301s2010 sz | s |||| 0|eng d
020 |a 9783034602136  |9 978-3-0346-0213-6 
024 7 |a 10.1007/978-3-0346-0213-6  |2 doi 
040 |d GrThAP 
050 4 |a QA641-670 
072 7 |a PBMP  |2 bicssc 
072 7 |a MAT012030  |2 bisacsh 
082 0 4 |a 516.36  |2 23 
100 1 |a Ritoré, Manuel.  |e author. 
245 1 0 |a Mean Curvature Flow and Isoperimetric Inequalities  |h [electronic resource] /  |c by Manuel Ritoré, Carlo Sinestrari. 
264 1 |a Basel :  |b Birkhäuser Basel,  |c 2010. 
300 |a VIII, 114 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advanced Courses in Mathematics — CRM Barcelona, Centre de Recerca Matemàtica 
505 0 |a Formation of Singularities in the Mean Curvature Flow -- Geometry of hypersurfaces -- Examples -- Local existence and formation of singularities -- Invariance properties -- Singular behaviour of convex surfaces -- Convexity estimates -- Rescaling near a singularity -- Huisken’s monotonicity formula -- Cylindrical and gradient estimates -- Mean curvature flow with surgeries -- Geometric Flows, Isoperimetric Inequalities and Hyperbolic Geometry -- The classical isoperimetric inequality in Euclidean space -- Surfaces -- Higher dimensions -- Some applications to hyperbolic geometry. 
520 |a Geometric flows have many applications in physics and geometry. The mean curvature flow occurs in the description of the interface evolution in certain physical models. This is related to the property that such a flow is the gradient flow of the area functional and therefore appears naturally in problems where a surface energy is minimized. The mean curvature flow also has many geometric applications, in analogy with the Ricci flow of metrics on abstract riemannian manifolds. One can use this flow as a tool to obtain classification results for surfaces satisfying certain curvature conditions, as well as to construct minimal surfaces. Geometric flows, obtained from solutions of geometric parabolic equations, can be considered as an alternative tool to prove isoperimetric inequalities. On the other hand, isoperimetric inequalities can help in treating several aspects of convergence of these flows. Isoperimetric inequalities have many applications in other fields of geometry, like hyperbolic manifolds. 
650 0 |a Mathematics. 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
650 0 |a Differential geometry. 
650 1 4 |a Mathematics. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Global Analysis and Analysis on Manifolds. 
700 1 |a Sinestrari, Carlo.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783034602129 
830 0 |a Advanced Courses in Mathematics — CRM Barcelona, Centre de Recerca Matemàtica 
856 4 0 |u http://dx.doi.org/10.1007/978-3-0346-0213-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)