Affine Flag Manifolds and Principal Bundles

Affine flag manifolds are infinite dimensional versions of familiar objects such as Graßmann varieties. The book features lecture notes, survey articles, and research notes - based on workshops held in Berlin, Essen, and Madrid - explaining the significance of these and related objects (such as doub...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Schmitt, Alexander (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Springer Basel, 2010.
Σειρά:Trends in Mathematics
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02630nam a22004335i 4500
001 978-3-0346-0288-4
003 DE-He213
005 20151030001908.0
007 cr nn 008mamaa
008 110128s2010 sz | s |||| 0|eng d
020 |a 9783034602884  |9 978-3-0346-0288-4 
024 7 |a 10.1007/978-3-0346-0288-4  |2 doi 
040 |d GrThAP 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
082 0 4 |a 516.35  |2 23 
245 1 0 |a Affine Flag Manifolds and Principal Bundles  |h [electronic resource] /  |c edited by Alexander Schmitt. 
264 1 |a Basel :  |b Springer Basel,  |c 2010. 
300 |a 290 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Trends in Mathematics 
505 0 |a Affine Springer Fibers and Affine Deligne-Lusztig Varieties -- Quantization of Hitchin’s Integrable System and the Geometric Langlands Conjecture -- Faltings’ Construction of the Moduli Space of Vector Bundles on a Smooth Projective Curve -- Lectures on the Moduli Stack of Vector Bundles on a Curve -- On Moduli Stacks of G-bundles over a Curve -- Clifford Indices for Vector Bundles on Curves -- Division Algebras and Unit Groups on Surfaces -- A Physics Perspective on Geometric Langlands Duality -- Double Affine Hecke Algebras and Affine Flag Manifolds, I. 
520 |a Affine flag manifolds are infinite dimensional versions of familiar objects such as Graßmann varieties. The book features lecture notes, survey articles, and research notes - based on workshops held in Berlin, Essen, and Madrid - explaining the significance of these and related objects (such as double affine Hecke algebras and affine Springer fibers) in representation theory (e.g., the theory of symmetric polynomials), arithmetic geometry (e.g., the fundamental lemma in the Langlands program), and algebraic geometry (e.g., affine flag manifolds as parameter spaces for principal bundles). Novel aspects of the theory of principal bundles on algebraic varieties are also studied in the book. 
650 0 |a Mathematics. 
650 0 |a Algebraic geometry. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebraic Geometry. 
700 1 |a Schmitt, Alexander.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783034602877 
830 0 |a Trends in Mathematics 
856 4 0 |u http://dx.doi.org/10.1007/978-3-0346-0288-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)