Classification of Higher Dimensional Algebraic Varieties

This book focuses on recent advances in the classification of complex projective varieties. It is divided into two parts. The first part gives a detailed account of recent results in the minimal model program. In particular, it contains a complete proof of the theorems on the existence of flips, on...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Hacon, Christopher D. (Συγγραφέας), Kovács, Sándor (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Birkhäuser Basel, 2010.
Σειρά:Oberwolfach Seminars ; 41
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02721nam a22004455i 4500
001 978-3-0346-0290-7
003 DE-He213
005 20151030021310.0
007 cr nn 008mamaa
008 110201s2010 sz | s |||| 0|eng d
020 |a 9783034602907  |9 978-3-0346-0290-7 
024 7 |a 10.1007/978-3-0346-0290-7  |2 doi 
040 |d GrThAP 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
082 0 4 |a 516.35  |2 23 
100 1 |a Hacon, Christopher D.  |e author. 
245 1 0 |a Classification of Higher Dimensional Algebraic Varieties  |h [electronic resource] /  |c by Christopher D. Hacon, Sándor Kovács. 
264 1 |a Basel :  |b Birkhäuser Basel,  |c 2010. 
300 |a 220 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Oberwolfach Seminars ;  |v 41 
505 0 |a Basics -- Preliminaries -- Singularities -- Recent advances in the minimal model program -- The main result -- Multiplier ideal sheaves -- Finite generation of the restricted algebra -- Log terminal models -- Non-vanishing -- Finiteness of log terminal models -- Compact moduli spaces of canonically polarized varieties -- Moduli problems -- Hilbert schemes -- The construction of the moduli space -- Families and moduli functors -- Singularities of stable varieties -- Subvarieties of moduli spaces. 
520 |a This book focuses on recent advances in the classification of complex projective varieties. It is divided into two parts. The first part gives a detailed account of recent results in the minimal model program. In particular, it contains a complete proof of the theorems on the existence of flips, on the existence of minimal models for varieties of log general type and of the finite generation of the canonical ring. The second part is an introduction to the theory of moduli spaces. It includes topics such as representing and moduli functors, Hilbert schemes, the boundedness, local closedness and separatedness of moduli spaces and the boundedness for varieties of general type. The book is aimed at advanced graduate students and researchers in algebraic geometry. 
650 0 |a Mathematics. 
650 0 |a Algebraic geometry. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebraic Geometry. 
700 1 |a Kovács, Sándor.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783034602891 
830 0 |a Oberwolfach Seminars ;  |v 41 
856 4 0 |u http://dx.doi.org/10.1007/978-3-0346-0290-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)