Introduction to Hyperfunctions and Their Integral Transforms An Applied and Computational Approach /

This textbook presents an elementary introduction to generalized functions by using Sato's approach of hyperfunctions which is based on complex function theory. This very intuitive and appealing approach has particularly great computational power.   The concept of hyperfunctions and their analy...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Graf, Urs (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Birkhäuser Basel, 2010.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02713nam a22005055i 4500
001 978-3-0346-0408-6
003 DE-He213
005 20151204143253.0
007 cr nn 008mamaa
008 101226s2010 sz | s |||| 0|eng d
020 |a 9783034604086  |9 978-3-0346-0408-6 
024 7 |a 10.1007/978-3-0346-0408-6  |2 doi 
040 |d GrThAP 
050 4 |a QA307 
050 4 |a QA432 
072 7 |a PBKL  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.72  |2 23 
100 1 |a Graf, Urs.  |e author. 
245 1 0 |a Introduction to Hyperfunctions and Their Integral Transforms  |h [electronic resource] :  |b An Applied and Computational Approach /  |c by Urs Graf. 
264 1 |a Basel :  |b Birkhäuser Basel,  |c 2010. 
300 |a 432 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a to Hyperfunctions -- Analytic Properties -- Laplace Transforms -- Fourier Transforms -- Hilbert Transforms -- Mellin Transforms -- Hankel Transforms. 
520 |a This textbook presents an elementary introduction to generalized functions by using Sato's approach of hyperfunctions which is based on complex function theory. This very intuitive and appealing approach has particularly great computational power.   The concept of hyperfunctions and their analytic properties is introduced and discussed in detail in the first two chapters of the book. Thereafter the focus lies on generalizing the (classical) Laplace, Fourier, Hilbert, Mellin, and Hankel transformations to hyperfunctions. Applications to integral and differential equations and a rich variety of concrete examples accompany the text throughout the book.   Requiring only standard knowledge of the theory of complex variables, the material is easily accessible for advanced undergraduate or graduate students. It serves as well as a reference for researchers in pure and applied mathematics, engineering and physics.  . 
650 0 |a Mathematics. 
650 0 |a Fourier analysis. 
650 0 |a Integral transforms. 
650 0 |a Operational calculus. 
650 0 |a Special functions. 
650 0 |a Computer mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Integral Transforms, Operational Calculus. 
650 2 4 |a Special Functions. 
650 2 4 |a Computational Science and Engineering. 
650 2 4 |a Fourier Analysis. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783034604079 
856 4 0 |u http://dx.doi.org/10.1007/978-3-0346-0408-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)