Homotopy Theory of C*-Algebras

Homotopy theory and C*-algebras are central topics in contemporary mathematics. This book introduces a modern homotopy theory for C*-algebras. One basic idea of the setup is to merge C*-algebras and spaces studied in algebraic topology into one category comprising C*-spaces. These objects are suitab...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Østvær, Paul Arne (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Springer Basel, 2010.
Σειρά:Frontiers in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02977nam a22004575i 4500
001 978-3-0346-0565-6
003 DE-He213
005 20130725201818.0
007 cr nn 008mamaa
008 100917s2010 sz | s |||| 0|eng d
020 |a 9783034605656  |9 978-3-0346-0565-6 
024 7 |a 10.1007/978-3-0346-0565-6  |2 doi 
040 |d GrThAP 
050 4 |a QA612-612.8 
072 7 |a PBPD  |2 bicssc 
072 7 |a MAT038000  |2 bisacsh 
082 0 4 |a 514.2  |2 23 
100 1 |a Østvær, Paul Arne.  |e author. 
245 1 0 |a Homotopy Theory of C*-Algebras  |h [electronic resource] /  |c by Paul Arne Østvær. 
264 1 |a Basel :  |b Springer Basel,  |c 2010. 
300 |a VI, 140p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Frontiers in Mathematics,  |x 1660-8046 
505 0 |a 1 Introduction -- 2 Preliminaries -- 2.1 C*-spaces -- 2.2 G – C*-spaces -- 2.3 Model categories -- 3 Unstable C*-homotopy theory -- 3.1 Pointwise model structures -- 3.2 Exact model structures -- 3.3 Matrix invariant model structures -- 3.4 Homotopy invariant model structures -- 3.5 Pointed model structures -- 3.6 Base change -- 4 Stable C*-homotopy theory -- 4.1 C*-spectra -- 4.2 Bispectra -- 4.3 Triangulated structure -- 4.4 Brown representability -- 4.5 C*-symmetric spectra -- 4.6 C*-functors -- 5 Invariants -- 5.1 Cohomology and homology theories -- 5.2 KK-theory and the Eilenberg-MacLane spectrum -- 5.3 HL-theory and the Eilenberg-MacLane -- 5.4 The Chern-Connes-Karoubi character -- 5.5 K-theory of C*-algebras -- 5.6 Zeta functions -- 6 The slice filtration -- References -- Index. 
520 |a Homotopy theory and C*-algebras are central topics in contemporary mathematics. This book introduces a modern homotopy theory for C*-algebras. One basic idea of the setup is to merge C*-algebras and spaces studied in algebraic topology into one category comprising C*-spaces. These objects are suitable fodder for standard homotopy theoretic moves, leading to unstable and stable model structures. With the foundations in place one is led to natural definitions of invariants for C*-spaces such as homology and cohomology theories, K-theory and zeta-functions. The text is largely self-contained. It serves a wide audience of graduate students and researchers interested in C*-algebras, homotopy theory and applications. 
650 0 |a Mathematics. 
650 0 |a Functional analysis. 
650 0 |a Algebraic topology. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebraic Topology. 
650 2 4 |a Functional Analysis. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783034605649 
830 0 |a Frontiers in Mathematics,  |x 1660-8046 
856 4 0 |u http://dx.doi.org/10.1007/978-3-0346-0565-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)