Symplectic Invariants and Hamiltonian Dynamics

The discoveries of the last decades have opened new perspectives for the old field of Hamiltonian systems and led to the creation of a new field: symplectic topology. Surprising rigidity phenomena demonstrate that the nature of symplectic mappings is very different from that of volume preserving map...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Hofer, Helmut (Συγγραφέας), Zehnder, Eduard (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Springer Basel, 2011.
Σειρά:Modern Birkhäuser Classics
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04134nam a22005175i 4500
001 978-3-0348-0104-1
003 DE-He213
005 20151204162324.0
007 cr nn 008mamaa
008 110330s2011 sz | s |||| 0|eng d
020 |a 9783034801041  |9 978-3-0348-0104-1 
024 7 |a 10.1007/978-3-0348-0104-1  |2 doi 
040 |d GrThAP 
050 4 |a QA641-670 
072 7 |a PBMP  |2 bicssc 
072 7 |a MAT012030  |2 bisacsh 
082 0 4 |a 516.36  |2 23 
100 1 |a Hofer, Helmut.  |e author. 
245 1 0 |a Symplectic Invariants and Hamiltonian Dynamics  |h [electronic resource] /  |c by Helmut Hofer, Eduard Zehnder. 
264 1 |a Basel :  |b Springer Basel,  |c 2011. 
300 |a XIV, 341 p. 49 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Modern Birkhäuser Classics 
505 0 |a 1 Introduction -- 2 Symplectic capacities -- 3 Existence of a capacity -- 4 Existence of closed characteristics -- 5 Compactly supported symplectic mappings in R2n -- 6 The Arnold conjecture, Floer homology and symplectic homology -- Appendix -- Index -- Bibliography. 
520 |a The discoveries of the last decades have opened new perspectives for the old field of Hamiltonian systems and led to the creation of a new field: symplectic topology. Surprising rigidity phenomena demonstrate that the nature of symplectic mappings is very different from that of volume preserving mappings. This raises new questions, many of them still unanswered. On the other hand, analysis of an old variational principle in classical mechanics has established global periodic phenomena in Hamiltonian systems. As it turns out, these seemingly different phenomena are mysteriously related. One of the links is a class of symplectic invariants, called symplectic capacities. These invariants are the main theme of this book, which includes such topics as basic symplectic geometry, symplectic capacities and rigidity, periodic orbits for Hamiltonian systems and the action principle, a bi-invariant metric on the symplectic diffeomorphism group and its geometry, symplectic fixed point theory, the Arnold conjectures and first order elliptic systems, and finally a survey on Floer homology and symplectic homology. The exposition is self-contained and addressed to researchers and students from the graduate level onwards.   ------   All the chapters have a nice introduction with the historic development of the subject and with a perfect description of the state of the art. The main ideas are brightly exposed throughout the book. (…) This book, written by two experienced researchers, will certainly fill in a gap in the theory of symplectic topology. The authors have taken part in the development of such a theory by themselves or by their collaboration with other outstanding people in the area. (Zentralblatt MATH)   This book is a beautiful introduction to one outlook on the exciting new developments of the last ten to fifteen years in symplectic geometry, or symplectic topology, as certain aspects of the subject are lately called. (…) The authors are obvious masters of the field, and their reflections here and there throughout the book on the ambient literature and open problems are perhaps the most interesting parts of the volume. (Matematica). 
650 0 |a Mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Differential geometry. 
650 0 |a Manifolds (Mathematics). 
650 0 |a Complex manifolds. 
650 1 4 |a Mathematics. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Manifolds and Cell Complexes (incl. Diff.Topology). 
650 2 4 |a Analysis. 
700 1 |a Zehnder, Eduard.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783034801034 
830 0 |a Modern Birkhäuser Classics 
856 4 0 |u http://dx.doi.org/10.1007/978-3-0348-0104-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)