Exponentially Convergent Algorithms for Abstract Differential Equations

This book presents new accurate and efficient exponentially convergent methods for abstract differential equations with unbounded operator coefficients in Banach space. These methods are highly relevant for practical scientific computing since the equations under consideration can be seen as the met...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Gavrilyuk, Ivan (Συγγραφέας), Makarov, Volodymyr (Συγγραφέας), Vasylyk, Vitalii (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Springer Basel, 2011.
Σειρά:Frontiers in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03147nam a22004455i 4500
001 978-3-0348-0119-5
003 DE-He213
005 20130726161813.0
007 cr nn 008mamaa
008 110715s2011 sz | s |||| 0|eng d
020 |a 9783034801195  |9 978-3-0348-0119-5 
024 7 |a 10.1007/978-3-0348-0119-5  |2 doi 
040 |d GrThAP 
050 4 |a QA1-939 
072 7 |a PB  |2 bicssc 
072 7 |a MAT000000  |2 bisacsh 
082 0 4 |a 510  |2 23 
100 1 |a Gavrilyuk, Ivan.  |e author. 
245 1 0 |a Exponentially Convergent Algorithms for Abstract Differential Equations  |h [electronic resource] /  |c by Ivan Gavrilyuk, Volodymyr Makarov, Vitalii Vasylyk. 
264 1 |a Basel :  |b Springer Basel,  |c 2011. 
300 |a VIII, 180p. 12 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Frontiers in Mathematics,  |x 1660-8046 
505 0 |a Preface -- 1 Introduction -- 2 Preliminaries -- 3 The first-order equations -- 4 The second-order equations -- Appendix: Tensor-product approximations of the operator exponential -- Bibliography -- Index. 
520 |a This book presents new accurate and efficient exponentially convergent methods for abstract differential equations with unbounded operator coefficients in Banach space. These methods are highly relevant for practical scientific computing since the equations under consideration can be seen as the meta-models of systems of ordinary differential equations (ODE) as well as of partial differential equations (PDEs) describing various applied problems. The framework of functional analysis allows one to obtain very general but at the same time transparent algorithms and mathematical results which then can be applied to mathematical models of the real world. The problem class includes initial value problems (IVP) for first order differential equations with constant and variable unbounded operator coefficients in a Banach space (the heat equation is a simple example), boundary value problems for the second order elliptic differential equation with an operator coefficient (e.g. the Laplace equation), IVPs for the second order strongly damped differential equation as well as exponentially convergent methods to IVPs for the first order nonlinear differential equation with unbounded operator coefficients.  For researchers and students of numerical functional analysis, engineering and other sciences this book provides highly efficient algorithms for the numerical solution of differential equations and applied problems. 
650 0 |a Mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematics, general. 
700 1 |a Makarov, Volodymyr.  |e author. 
700 1 |a Vasylyk, Vitalii.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783034801188 
830 0 |a Frontiers in Mathematics,  |x 1660-8046 
856 4 0 |u http://dx.doi.org/10.1007/978-3-0348-0119-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)