Lecture Notes on Mean Curvature Flow

This book is an introduction to the subject of mean curvature flow of hypersurfaces with special emphasis on the analysis of singularities. This flow occurs in the description of the evolution of numerous physical models where the energy is given by the area of the interfaces. These notes provide a...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Mantegazza, Carlo (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Springer Basel, 2011.
Σειρά:Progress in Mathematics ; 290
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02860nam a22004455i 4500
001 978-3-0348-0145-4
003 DE-He213
005 20151125212518.0
007 cr nn 008mamaa
008 110726s2011 sz | s |||| 0|eng d
020 |a 9783034801454  |9 978-3-0348-0145-4 
024 7 |a 10.1007/978-3-0348-0145-4  |2 doi 
040 |d GrThAP 
050 4 |a QA299.6-433 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515  |2 23 
100 1 |a Mantegazza, Carlo.  |e author. 
245 1 0 |a Lecture Notes on Mean Curvature Flow  |h [electronic resource] /  |c by Carlo Mantegazza. 
264 1 |a Basel :  |b Springer Basel,  |c 2011. 
300 |a XII, 168 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematics ;  |v 290 
505 0 |a Foreword -- Chapter 1. Definition and Short Time Existence -- Chapter 2. Evolution of Geometric Quantities -- Chapter 3. Monotonicity Formula and Type I Singularities -- Chapter 4. Type II Singularities -- Chapter 5. Conclusions and Research Directions -- Appendix A. Quasilinear Parabolic Equations on Manifolds -- Appendix B. Interior Estimates of Ecker and Huisken -- Appendix C. Hamilton’s Maximum Principle for Tensors -- Appendix D. Hamilton’s Matrix Li–Yau–Harnack Inequality in Rn -- Appendix E. Abresch and Langer Classification of Homothetically Shrinking Closed Curves -- Appendix F. Important Results without Proof in the Book -- Bibliography -- Index. 
520 |a This book is an introduction to the subject of mean curvature flow of hypersurfaces with special emphasis on the analysis of singularities. This flow occurs in the description of the evolution of numerous physical models where the energy is given by the area of the interfaces. These notes provide a detailed discussion of the classical parametric approach (mainly developed by R. Hamilton and G. Huisken). They are well suited for a course at PhD/PostDoc level and can be useful for any researcher interested in a solid introduction to the technical issues of the field. All the proofs are carefully written, often simplified, and contain several comments. Moreover, the author revisited and organized a large amount of material scattered around in literature in the last 25 years. 
650 0 |a Mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 1 4 |a Mathematics. 
650 2 4 |a Analysis. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783034801447 
830 0 |a Progress in Mathematics ;  |v 290 
856 4 0 |u http://dx.doi.org/10.1007/978-3-0348-0145-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)