Pseudodifferential Analysis, Automorphic Distributions in the Plane and Modular Forms

Pseudodifferential analysis, introduced in this book in a way adapted to the needs of number theorists, relates automorphic function theory in the hyperbolic half-plane Π to automorphic distribution theory in the plane. Spectral-theoretic questions are discussed in one or the other environment: in t...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Unterberger, André (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Springer Basel, 2011.
Σειρά:Pseudo-Differential Operators, Theory and Applications ; 8
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03063nam a22004575i 4500
001 978-3-0348-0166-9
003 DE-He213
005 20130726161815.0
007 cr nn 008mamaa
008 110804s2011 sz | s |||| 0|eng d
020 |a 9783034801669  |9 978-3-0348-0166-9 
024 7 |a 10.1007/978-3-0348-0166-9  |2 doi 
040 |d GrThAP 
050 4 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
082 0 4 |a 512.7  |2 23 
100 1 |a Unterberger, André.  |e author. 
245 1 0 |a Pseudodifferential Analysis, Automorphic Distributions in the Plane and Modular Forms  |h [electronic resource] /  |c by André Unterberger. 
264 1 |a Basel :  |b Springer Basel,  |c 2011. 
300 |a VIII, 300p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Pseudo-Differential Operators, Theory and Applications ;  |v 8 
505 0 |a Introduction -- The Weyl calculus -- The Radon transformation and applications -- Automorphic functions and automorphic distributions -- A class of Poincaré series -- Spectral decomposition of the Poincaré summation process -- The totally radial Weyl calculus and arithmetic -- Should one generalize the Weyl calculus to an adelic setting? -- Index of notation -- Subject Index -- Bibliography. 
520 |a Pseudodifferential analysis, introduced in this book in a way adapted to the needs of number theorists, relates automorphic function theory in the hyperbolic half-plane Π to automorphic distribution theory in the plane. Spectral-theoretic questions are discussed in one or the other environment: in the latter one, the problem of decomposing automorphic functions in Π according to the spectral decomposition of the modular Laplacian gives way to the simpler one of decomposing automorphic distributions in R2 into homogeneous components. The Poincaré summation process, which consists in building automorphic distributions as series of g-transforms, for g Î SL(2;Z), of some initial function, say in S(R2), is analyzed in detail. On Π, a large class of new automorphic functions or measures is built in the same way: one of its features lies in an interpretation, as a spectral density, of the restriction of the zeta function to any line within the critical strip. The book is addressed to a wide audience of advanced graduate students and researchers working in analytic number theory or pseudo-differential analysis. 
650 0 |a Mathematics. 
650 0 |a Operator theory. 
650 0 |a Number theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Number Theory. 
650 2 4 |a Operator Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783034801652 
830 0 |a Pseudo-Differential Operators, Theory and Applications ;  |v 8 
856 4 0 |u http://dx.doi.org/10.1007/978-3-0348-0166-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)