Representations of Finite Groups: Local Cohomology and Support

The seminar focuses on a recent solution, by the authors, of a long standing problem concerning the stable module category (of not necessarily finite dimensional representations) of a finite group. The proof draws on ideas from commutative algebra, cohomology of groups, and stable homotopy theory. T...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Benson, David J. (Συγγραφέας), Iyengar, Srikanth (Συγγραφέας), Krause, Henning (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Springer Basel, 2012.
Σειρά:Oberwolfach Seminars ; 43
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04141nam a22005295i 4500
001 978-3-0348-0260-4
003 DE-He213
005 20151204183738.0
007 cr nn 008mamaa
008 111114s2012 sz | s |||| 0|eng d
020 |a 9783034802604  |9 978-3-0348-0260-4 
024 7 |a 10.1007/978-3-0348-0260-4  |2 doi 
040 |d GrThAP 
050 4 |a QA174-183 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
082 0 4 |a 512.2  |2 23 
100 1 |a Benson, David J.  |e author. 
245 1 0 |a Representations of Finite Groups: Local Cohomology and Support  |h [electronic resource] /  |c by David J. Benson, Srikanth Iyengar, Henning Krause. 
264 1 |a Basel :  |b Springer Basel,  |c 2012. 
300 |a X, 105 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Oberwolfach Seminars ;  |v 43 
505 0 |a Preface -- 1 Monday -- 1.1 Overview -- 1.2 Modules over group algebras -- 1.3 Triangulated categories -- 1.4 Exercises -- 2 Tuesday -- 2.1 Perfect complexes over commutative rings -- 2.2 Brown representability and localization -- 2.3 The stable module category of a finite group -- 2.4 Exercises -- 3 Wednesday -- 3.1 -- 3.2 Koszul objects and support -- 3.3 The homotopy category of injectives -- 3.4 Exercises -- 4 Thursday -- 4.1 Stratifying triangulated categories -- 4.2 Consequences of stratification -- 4.3 The Klein four group -- 4.4 Exercises -- 5 Friday -- 5.1 Localising subcategories of D(A) -- 5.2 Elementary abelian 2-groups -- 5.3 Stratification for arbitrary finite groups -- 5.4 Exercises -- A Support for modules over commutative rings -- Bibliography -- Index. 
520 |a The seminar focuses on a recent solution, by the authors, of a long standing problem concerning the stable module category (of not necessarily finite dimensional representations) of a finite group. The proof draws on ideas from commutative algebra, cohomology of groups, and stable homotopy theory. The unifying theme is a notion of support which provides a geometric approach for studying various algebraic structures. The prototype for this has been Daniel Quillen’s description of the algebraic variety corresponding to the cohomology ring of a finite group, based on which Jon Carlson introduced support varieties for modular representations. This has made it possible to apply methods of algebraic geometry to obtain representation theoretic information. Their work has inspired the development of analogous theories in various contexts, notably modules over commutative complete intersection rings and over cocommutative Hopf algebras. One of the threads in this development has been the classification of thick or localizing subcategories of various triangulated categories of representations. This story started with Mike Hopkins’ classification of thick subcategories of the perfect complexes over a commutative Noetherian ring, followed by a classification of localizing subcategories of its full derived category, due to Amnon Neeman. The authors have been developing an approach to address such classification problems, based on a construction of local cohomology functors and support for triangulated categories with ring of operators. The book serves as an introduction to this circle of ideas. 
650 0 |a Mathematics. 
650 0 |a Associative rings. 
650 0 |a Rings (Algebra). 
650 0 |a Commutative algebra. 
650 0 |a Commutative rings. 
650 0 |a Group theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Commutative Rings and Algebras. 
650 2 4 |a Associative Rings and Algebras. 
700 1 |a Iyengar, Srikanth.  |e author. 
700 1 |a Krause, Henning.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783034802598 
830 0 |a Oberwolfach Seminars ;  |v 43 
856 4 0 |u http://dx.doi.org/10.1007/978-3-0348-0260-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)