Hilbert Modular Forms with Coefficients in Intersection Homology and Quadratic Base Change

In the 1970s Hirzebruch and Zagier produced elliptic modular forms with coefficients in the homology of a Hilbert modular surface. They then computed the Fourier coefficients of these forms in terms of period integrals and L-functions. In this book the authors take an alternate approach to these the...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Getz, Jayce (Συγγραφέας), Goresky, Mark (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Springer Basel, 2012.
Σειρά:Progress in Mathematics ; 298
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03215nam a22004695i 4500
001 978-3-0348-0351-9
003 DE-He213
005 20151125141232.0
007 cr nn 008mamaa
008 120328s2012 sz | s |||| 0|eng d
020 |a 9783034803519  |9 978-3-0348-0351-9 
024 7 |a 10.1007/978-3-0348-0351-9  |2 doi 
040 |d GrThAP 
050 4 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
082 0 4 |a 512.7  |2 23 
100 1 |a Getz, Jayce.  |e author. 
245 1 0 |a Hilbert Modular Forms with Coefficients in Intersection Homology and Quadratic Base Change  |h [electronic resource] /  |c by Jayce Getz, Mark Goresky. 
264 1 |a Basel :  |b Springer Basel,  |c 2012. 
300 |a XIV, 258 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematics ;  |v 298 
505 0 |a Chapter 1. Introduction -- Chapter 2. Review of Chains and Cochains -- Chapter 3. Review of Intersection Homology and Cohomology -- Chapter 4. Review of Arithmetic Quotients -- Chapter 5. Generalities on Hilbert Modular Forms and Varieties -- Chapter 6. Automorphic vector bundles and local systems -- Chapter 7. The automorphic description of intersection cohomology -- Chapter 8. Hilbert Modular Forms with Coefficients in a Hecke Module -- Chapter 9. Explicit construction of cycles -- Chapter 10. The full version of Theorem 1.3 -- Chapter 11. Eisenstein Series with Coefficients in Intersection Homology -- Appendix A. Proof of Proposition 2.4 -- Appendix B. Recollections on Orbifolds -- Appendix C. Basic adèlic facts -- Appendix D. Fourier expansions of Hilbert modular forms -- Appendix E. Review of Prime Degree Base Change for GL2 -- Bibliography. 
520 |a In the 1970s Hirzebruch and Zagier produced elliptic modular forms with coefficients in the homology of a Hilbert modular surface. They then computed the Fourier coefficients of these forms in terms of period integrals and L-functions. In this book the authors take an alternate approach to these theorems and generalize them to the setting of Hilbert modular varieties of arbitrary dimension. The approach is conceptual and uses tools that were not available to Hirzebruch and Zagier, including intersection homology theory, properties of modular cycles, and base change. Automorphic vector bundles, Hecke operators and Fourier coefficients of modular forms are presented both in the classical and adèlic settings. The book should provide a foundation for approaching similar questions for other locally symmetric spaces. 
650 0 |a Mathematics. 
650 0 |a Algebraic geometry. 
650 0 |a Number theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Number Theory. 
650 2 4 |a Algebraic Geometry. 
700 1 |a Goresky, Mark.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783034803502 
830 0 |a Progress in Mathematics ;  |v 298 
856 4 0 |u http://dx.doi.org/10.1007/978-3-0348-0351-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)