Hilbert Modular Forms with Coefficients in Intersection Homology and Quadratic Base Change
In the 1970s Hirzebruch and Zagier produced elliptic modular forms with coefficients in the homology of a Hilbert modular surface. They then computed the Fourier coefficients of these forms in terms of period integrals and L-functions. In this book the authors take an alternate approach to these the...
Κύριοι συγγραφείς: | , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Basel :
Springer Basel,
2012.
|
Σειρά: | Progress in Mathematics ;
298 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Chapter 1. Introduction
- Chapter 2. Review of Chains and Cochains
- Chapter 3. Review of Intersection Homology and Cohomology
- Chapter 4. Review of Arithmetic Quotients
- Chapter 5. Generalities on Hilbert Modular Forms and Varieties
- Chapter 6. Automorphic vector bundles and local systems
- Chapter 7. The automorphic description of intersection cohomology
- Chapter 8. Hilbert Modular Forms with Coefficients in a Hecke Module
- Chapter 9. Explicit construction of cycles
- Chapter 10. The full version of Theorem 1.3
- Chapter 11. Eisenstein Series with Coefficients in Intersection Homology
- Appendix A. Proof of Proposition 2.4
- Appendix B. Recollections on Orbifolds
- Appendix C. Basic adèlic facts
- Appendix D. Fourier expansions of Hilbert modular forms
- Appendix E. Review of Prime Degree Base Change for GL2
- Bibliography.