Hilbert Modular Forms with Coefficients in Intersection Homology and Quadratic Base Change

In the 1970s Hirzebruch and Zagier produced elliptic modular forms with coefficients in the homology of a Hilbert modular surface. They then computed the Fourier coefficients of these forms in terms of period integrals and L-functions. In this book the authors take an alternate approach to these the...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Getz, Jayce (Συγγραφέας), Goresky, Mark (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Springer Basel, 2012.
Σειρά:Progress in Mathematics ; 298
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Chapter 1. Introduction
  • Chapter 2. Review of Chains and Cochains
  • Chapter 3. Review of Intersection Homology and Cohomology
  • Chapter 4. Review of Arithmetic Quotients
  • Chapter 5. Generalities on Hilbert Modular Forms and Varieties
  • Chapter 6. Automorphic vector bundles and local systems
  • Chapter 7. The automorphic description of intersection cohomology
  • Chapter 8. Hilbert Modular Forms with Coefficients in a Hecke Module
  • Chapter 9. Explicit construction of cycles
  • Chapter 10. The full version of Theorem 1.3
  • Chapter 11. Eisenstein Series with Coefficients in Intersection Homology
  • Appendix A. Proof of Proposition 2.4
  • Appendix B. Recollections on Orbifolds
  • Appendix C. Basic adèlic facts
  • Appendix D. Fourier expansions of Hilbert modular forms
  • Appendix E. Review of Prime Degree Base Change for GL2
  • Bibliography.