Concentration Analysis and Applications to PDE ICTS Workshop, Bangalore, January 2012 /

Concentration analysis provides, in settings without a priori available compactness, a manageable structural description for the functional sequences intended to approximate solutions of partial differential equations. Since the introduction of concentration compactness in the 1980s, concentration a...

Full description

Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Adimurthi, (Editor), Sandeep, K. (Editor), Schindler, Ian (Editor), Tintarev, Cyril (Editor)
Format: Electronic eBook
Language:English
Published: Basel : Springer Basel : Imprint: Birkhäuser, 2013.
Series:Trends in Mathematics
Subjects:
Online Access:Full Text via HEAL-Link
LEADER 03437nam a22005295i 4500
001 978-3-0348-0373-1
003 DE-He213
005 20151030051127.0
007 cr nn 008mamaa
008 131122s2013 sz | s |||| 0|eng d
020 |a 9783034803731  |9 978-3-0348-0373-1 
024 7 |a 10.1007/978-3-0348-0373-1  |2 doi 
040 |d GrThAP 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
082 0 4 |a 515.353  |2 23 
245 1 0 |a Concentration Analysis and Applications to PDE  |h [electronic resource] :  |b ICTS Workshop, Bangalore, January 2012 /  |c edited by Adimurthi, K. Sandeep, Ian Schindler, Cyril Tintarev. 
264 1 |a Basel :  |b Springer Basel :  |b Imprint: Birkhäuser,  |c 2013. 
300 |a X, 156 p. 119 illus., 1 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Trends in Mathematics 
505 0 |a Introduction -- On the Elements Involved in the Lack of Compactness in Critical Sobolev Embedding -- A Class of Second-order Dilation Invariant Inequalities -- Blow-up Solutions for Linear Perturbations of the Yamabe Equation -- Extremals for Sobolev and Exponential Inequalities in Hyperbolic Space -- The Lyapunov–Schmidt Reduction for Some Critical Problems -- A General Theorem for the Construction of Blowing-up Solutions to Some Elliptic Nonlinear Equations via Lyapunov–Schmidt’s Finite-dimensional Reduction -- Concentration Analysis and Cocompactness -- A Note on Non-radial Sign-changing Solutions for the Schrödinger–Poisson Problem in the Semiclassical Limit. 
520 |a Concentration analysis provides, in settings without a priori available compactness, a manageable structural description for the functional sequences intended to approximate solutions of partial differential equations. Since the introduction of concentration compactness in the 1980s, concentration analysis today is formalized on the functional-analytic level as well as in terms of wavelets, extends to a wide range of spaces, involves much larger class of invariances than the original Euclidean rescalings and has a broad scope of applications to PDE. The book represents current research in concentration and blow-up phenomena from various perspectives, with a variety of applications to elliptic and evolution PDEs, as well as a systematic functional-analytic background for concentration phenomena, presented by profile decompositions based on wavelet theory and cocompact imbeddings. 
650 0 |a Mathematics. 
650 0 |a Functional analysis. 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
650 0 |a Partial differential equations. 
650 1 4 |a Mathematics. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Global Analysis and Analysis on Manifolds. 
650 2 4 |a Functional Analysis. 
700 1 |a Adimurthi, .  |e editor. 
700 1 |a Sandeep, K.  |e editor. 
700 1 |a Schindler, Ian.  |e editor. 
700 1 |a Tintarev, Cyril.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783034803724 
830 0 |a Trends in Mathematics 
856 4 0 |u http://dx.doi.org/10.1007/978-3-0348-0373-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)