Associahedra, Tamari Lattices and Related Structures Tamari Memorial Festschrift /

Tamari lattices originated from weakenings or reinterpretations of the familar associativity law. This was the subject of Dov Tamari's thesis at the Sorbonne in Paris in 1951 and the central theme of his subsequent mathematical work. Tamari lattices can be realized in terms of polytopes called...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Müller-Hoissen, Folkert (Επιμελητής έκδοσης), Pallo, Jean Marcel (Επιμελητής έκδοσης), Stasheff, Jim (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Springer Basel : Imprint: Birkhäuser, 2012.
Σειρά:Progress in Mathematics ; 299
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02982nam a22005775i 4500
001 978-3-0348-0405-9
003 DE-He213
005 20151103121532.0
007 cr nn 008mamaa
008 120712s2012 sz | s |||| 0|eng d
020 |a 9783034804059  |9 978-3-0348-0405-9 
024 7 |a 10.1007/978-3-0348-0405-9  |2 doi 
040 |d GrThAP 
050 4 |a QA639.5-640.7 
050 4 |a QA640.7-640.77 
072 7 |a PBMW  |2 bicssc 
072 7 |a PBD  |2 bicssc 
072 7 |a MAT012020  |2 bisacsh 
072 7 |a MAT008000  |2 bisacsh 
082 0 4 |a 516.1  |2 23 
245 1 0 |a Associahedra, Tamari Lattices and Related Structures  |h [electronic resource] :  |b Tamari Memorial Festschrift /  |c edited by Folkert Müller-Hoissen, Jean Marcel Pallo, Jim Stasheff. 
264 1 |a Basel :  |b Springer Basel :  |b Imprint: Birkhäuser,  |c 2012. 
300 |a XX, 436 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematics ;  |v 299 
520 |a Tamari lattices originated from weakenings or reinterpretations of the familar associativity law. This was the subject of Dov Tamari's thesis at the Sorbonne in Paris in 1951 and the central theme of his subsequent mathematical work. Tamari lattices can be realized in terms of polytopes called associahedra, which in fact also appeared first in Tamari's thesis. By now these beautiful structures have made their appearance in many different areas of pure and applied mathematics, such as algebra, combinatorics, computer science, category theory, geometry, topology, and also in physics. Their interdisciplinary nature provides much fascination and value. On the occasion of Dov Tamari's centennial birthday, this book provides an introduction to topical research related to Tamari's work and ideas. Most of the articles collected in it are written in a way accessible to a wide audience of students and researchers in mathematics and mathematical physics and are accompanied by high quality illustrations. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Ordered algebraic structures. 
650 0 |a Convex geometry. 
650 0 |a Discrete geometry. 
650 0 |a Number theory. 
650 0 |a Algebraic topology. 
650 1 4 |a Mathematics. 
650 2 4 |a Convex and Discrete Geometry. 
650 2 4 |a Number Theory. 
650 2 4 |a Order, Lattices, Ordered Algebraic Structures. 
650 2 4 |a Algebraic Topology. 
700 1 |a Müller-Hoissen, Folkert.  |e editor. 
700 1 |a Pallo, Jean Marcel.  |e editor. 
700 1 |a Stasheff, Jim.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783034804042 
830 0 |a Progress in Mathematics ;  |v 299 
856 4 0 |u http://dx.doi.org/10.1007/978-3-0348-0405-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)