Classical Geometries in Modern Contexts Geometry of Real Inner Product Spaces Third Edition /

The focus of this book and its geometric notions is on real vector spaces X that are finite or infinite inner product spaces of arbitrary dimension greater than or equal to 2. It characterizes both euclidean and hyperbolic geometry with respect to natural properties of (general) translations and gen...

Full description

Bibliographic Details
Main Author: Benz, Walter (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Basel : Springer Basel : Imprint: Birkhäuser, 2012.
Edition:3rd ed. 2012.
Subjects:
Online Access:Full Text via HEAL-Link
LEADER 03550nam a22004455i 4500
001 978-3-0348-0420-2
003 DE-He213
005 20151125191320.0
007 cr nn 008mamaa
008 120813s2012 sz | s |||| 0|eng d
020 |a 9783034804202  |9 978-3-0348-0420-2 
024 7 |a 10.1007/978-3-0348-0420-2  |2 doi 
040 |d GrThAP 
050 4 |a QA440-699 
072 7 |a PBM  |2 bicssc 
072 7 |a MAT012000  |2 bisacsh 
082 0 4 |a 516  |2 23 
100 1 |a Benz, Walter.  |e author. 
245 1 0 |a Classical Geometries in Modern Contexts  |h [electronic resource] :  |b Geometry of Real Inner Product Spaces Third Edition /  |c by Walter Benz. 
250 |a 3rd ed. 2012. 
264 1 |a Basel :  |b Springer Basel :  |b Imprint: Birkhäuser,  |c 2012. 
300 |a XVIII, 310 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Preface -- 1 Translation Groups -- 2 Euclidean and Hyperbolic Geometry -- 3 Sphere Geometries of Möbius and Lie -- 4 Lorentz Transformations -- 5 δ–Projective Mappings, Isomorphism Theorems -- 6 Planes of Leibniz, Lines of Weierstrass, Varia -- A Notation and symbols -- B Bibliography -- Index. 
520 |a The focus of this book and its geometric notions is on real vector spaces X that are finite or infinite inner product spaces of arbitrary dimension greater than or equal to 2. It characterizes both euclidean and hyperbolic geometry with respect to natural properties of (general) translations and general distances of X. Also for these spaces X, it studies the sphere geometries of Möbius and Lie as well as geometries where Lorentz transformations play the key role. Proofs of newer theorems characterizing isometries and Lorentz transformations under mild hypotheses are included, such as for instance infinite dimensional versions of famous theorems of A.D. Alexandrov on Lorentz transformations. A real benefit is the dimension-free approach to important geometrical theories. New to this third edition is a chapter dealing with a simple and great idea of Leibniz that allows us to characterize, for these same spaces X, hyperplanes of euclidean, hyperbolic geometry, or spherical geometry, the geometries of Lorentz-Minkowski and de Sitter, and this through finite or infinite dimensions greater than 1. Another new and fundamental result in this edition concerns the representation of hyperbolic motions, their form and their transformations. Further we show that the geometry (P,G) of segments based on X is isomorphic to the hyperbolic geometry over X. Here P collects all x in X of norm less than one, G is defined to be the group of bijections of P transforming segments of P onto segments. The only prerequisites for reading this book are basic linear algebra and basic 2- and 3-dimensional real geometry. This implies that mathematicians who have not so far been especially interested in geometry could study and understand some of the great ideas of classical geometries in modern and general contexts. 
650 0 |a Mathematics. 
650 0 |a Geometry. 
650 0 |a Physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Geometry. 
650 2 4 |a Mathematical Methods in Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783034804196 
856 4 0 |u http://dx.doi.org/10.1007/978-3-0348-0420-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)