A Comprehensive Treatment of q-Calculus

To date, the theoretical development of q-calculus has rested on a non-uniform basis. Generally, the bulky Gasper-Rahman notation was used, but the published works on q-calculus looked different depending on where and by whom they were written. This confusion of tongues not only complicated the theo...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Ernst, Thomas (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Springer Basel : Imprint: Birkhäuser, 2012.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03089nam a22004455i 4500
001 978-3-0348-0431-8
003 DE-He213
005 20151204174504.0
007 cr nn 008mamaa
008 120913s2012 sz | s |||| 0|eng d
020 |a 9783034804318  |9 978-3-0348-0431-8 
024 7 |a 10.1007/978-3-0348-0431-8  |2 doi 
040 |d GrThAP 
050 4 |a QA351 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a MAT037000  |2 bisacsh 
082 0 4 |a 515.5  |2 23 
100 1 |a Ernst, Thomas.  |e author. 
245 1 2 |a A Comprehensive Treatment of q-Calculus  |h [electronic resource] /  |c by Thomas Ernst. 
264 1 |a Basel :  |b Springer Basel :  |b Imprint: Birkhäuser,  |c 2012. 
300 |a XVI, 492 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a 1 Introduction -- 2 The different languages of q -- 3 Pre q-Analysis -- 4 The q-umbral calculus and the semigroups. The Nørlund calculus of finite diff -- 5 q-Stirling numbers -- 6 The first q-functions -- 7 An umbral method for q-hypergeometric series -- 8 Applications of the umbral calculus -- 9 Ciglerian q-Laguerre polynomials -- 10 q-Jacobi polynomials -- 11 q-Legendre polynomials and Carlitz-AlSalam polynomials -- 12 q-functions of many variables -- 13 Linear partial q-difference equations -- 14 q-Calculus and physics -- 15 Appendix: Other philosophies. 
520 |a To date, the theoretical development of q-calculus has rested on a non-uniform basis. Generally, the bulky Gasper-Rahman notation was used, but the published works on q-calculus looked different depending on where and by whom they were written. This confusion of tongues not only complicated the theoretical development but also contributed to q-calculus remaining a neglected mathematical field. This book overcomes these problems by introducing a new and interesting notation for q-calculus based on logarithms. For instance, q-hypergeometric functions are now visually clear and easy to trace back to their hypergeometric parents. With this new notation it is also easy to see the connection between q-hypergeometric functions and the q-gamma function, something that until now has been overlooked. The book covers many topics on q-calculus, including special functions, combinatorics, and q-difference equations. Beyond a thorough review of the historical development of q-calculus, it also presents the domains of modern physics for which q-calculus is applicable, such as particle physics and supersymmetry, to name just a few. 
650 0 |a Mathematics. 
650 0 |a Special functions. 
650 0 |a Number theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Special Functions. 
650 2 4 |a Number Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783034804301 
856 4 0 |u http://dx.doi.org/10.1007/978-3-0348-0431-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)