Extremal Problems in Interpolation Theory, Whitney-Besicovitch Coverings, and Singular Integrals

In this book we suggest a unified method of constructing near-minimizers for certain important functionals arising in approximation, harmonic analysis and ill-posed problems and most widely used in interpolation theory. The constructions are based on far-reaching refinements of the classical Calderó...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Kislyakov, Sergey (Συγγραφέας), Kruglyak, Natan (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Springer Basel : Imprint: Birkhäuser, 2013.
Σειρά:Monografie Matematyczne ; 74
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03740nam a22005055i 4500
001 978-3-0348-0469-1
003 DE-He213
005 20151204163132.0
007 cr nn 008mamaa
008 121029s2013 sz | s |||| 0|eng d
020 |a 9783034804691  |9 978-3-0348-0469-1 
024 7 |a 10.1007/978-3-0348-0469-1  |2 doi 
040 |d GrThAP 
050 4 |a QA331.5 
072 7 |a PBKB  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a MAT037000  |2 bisacsh 
082 0 4 |a 515.8  |2 23 
100 1 |a Kislyakov, Sergey.  |e author. 
245 1 0 |a Extremal Problems in Interpolation Theory, Whitney-Besicovitch Coverings, and Singular Integrals  |h [electronic resource] /  |c by Sergey Kislyakov, Natan Kruglyak. 
264 1 |a Basel :  |b Springer Basel :  |b Imprint: Birkhäuser,  |c 2013. 
300 |a X, 322 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Monografie Matematyczne ;  |v 74 
505 0 |a Preface -- Introduction -- Definitions, notation, and some standard facts -- Part 1. Background -- Chapter 1. Classical Calderón–Zygmund decomposition and real interpolation -- Chapter 2. Singular integrals -- Chapter 3. Classical covering theorems -- Chapter 4. Spaces of smooth functions and operators on them -- Chapter 5. Some topics in interpolation -- Chapter 6. Regularization for Banach spaces -- Chapter 7. Stability for analytic Hardy spaces -- Part 2. Advanced theory -- Chapter 8. Controlled coverings -- Chapter 9. Construction of near-minimizers -- Chapter 10. Stability of near-minimizers -- Chapter 11. The omitted case of a limit exponent -- Chapter A. Appendix. Near-minimizers for Brudnyi and Triebel–Lizorkin spaces -- Notes and remarks -- Bibliography -- Index. 
520 |a In this book we suggest a unified method of constructing near-minimizers for certain important functionals arising in approximation, harmonic analysis and ill-posed problems and most widely used in interpolation theory. The constructions are based on far-reaching refinements of the classical Calderón–Zygmund decomposition. These new Calderón–Zygmund decompositions in turn are produced with the help of new covering theorems that combine many remarkable features of classical results established by Besicovitch, Whitney and Wiener. In many cases the minimizers constructed in the book are stable (i.e., remain near-minimizers) under the action of Calderón–Zygmund singular integral operators. The book is divided into two parts. While the new method is presented in great detail in the second part, the first is mainly devoted to the prerequisites needed for a self-contained presentation of the main topic. There we discuss the classical covering results mentioned above, various spectacular applications of the classical Calderón–Zygmund decompositions, and the relationship of all this to real interpolation. It also serves as a quick introduction to such important topics as spaces of smooth functions or singular integrals. 
650 0 |a Mathematics. 
650 0 |a Approximation theory. 
650 0 |a Functional analysis. 
650 0 |a Functions of real variables. 
650 1 4 |a Mathematics. 
650 2 4 |a Real Functions. 
650 2 4 |a Approximations and Expansions. 
650 2 4 |a Functional Analysis. 
700 1 |a Kruglyak, Natan.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783034804684 
830 0 |a Monografie Matematyczne ;  |v 74 
856 4 0 |u http://dx.doi.org/10.1007/978-3-0348-0469-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)