High Dimensional Probability VI The Banff Volume /

This is a collection of papers by participants at the High Dimensional Probability VI Meeting held from October 9-14, 2011 at the Banff International Research Station in Banff, Alberta, Canada.  High Dimensional Probability (HDP) is an area of mathematics that includes the study of probability distr...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Houdré, Christian (Επιμελητής έκδοσης), Mason, David M. (Επιμελητής έκδοσης), Rosiński, Jan (Επιμελητής έκδοσης), Wellner, Jon A. (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Springer Basel : Imprint: Birkhäuser, 2013.
Σειρά:Progress in Probability ; 66
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03115nam a22005415i 4500
001 978-3-0348-0490-5
003 DE-He213
005 20151204163925.0
007 cr nn 008mamaa
008 130420s2013 sz | s |||| 0|eng d
020 |a 9783034804905  |9 978-3-0348-0490-5 
024 7 |a 10.1007/978-3-0348-0490-5  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
245 1 0 |a High Dimensional Probability VI  |h [electronic resource] :  |b The Banff Volume /  |c edited by Christian Houdré, David M. Mason, Jan Rosiński, Jon A. Wellner. 
264 1 |a Basel :  |b Springer Basel :  |b Imprint: Birkhäuser,  |c 2013. 
300 |a XIII, 374 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Probability ;  |v 66 
520 |a This is a collection of papers by participants at the High Dimensional Probability VI Meeting held from October 9-14, 2011 at the Banff International Research Station in Banff, Alberta, Canada.  High Dimensional Probability (HDP) is an area of mathematics that includes the study of probability distributions and limit theorems in infinite dimensional spaces such as Hilbert spaces and Banach spaces. The most remarkable feature of this area is that it has resulted in the creation of powerful new tools and perspectives, whose range of application has led to interactions with other areas of mathematics, statistics, and computer science. These include random matrix theory, nonparametric statistics, empirical process theory, statistical learning theory, concentration of measure phenomena, strong and weak approximations, distribution function estimation in high dimensions, combinatorial optimization, and random graph theory. The papers in this volume show that HDP theory continues to develop new tools, methods, techniques and perspectives to analyze the random phenomena. Both researchers and advanced students will find this book of great use for learning about new avenues of research. 
650 0 |a Mathematics. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Computer mathematics. 
650 0 |a Calculus of variations. 
650 0 |a Probabilities. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Mathematical Applications in Computer Science. 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization. 
700 1 |a Houdré, Christian.  |e editor. 
700 1 |a Mason, David M.  |e editor. 
700 1 |a Rosiński, Jan.  |e editor. 
700 1 |a Wellner, Jon A.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783034804899 
830 0 |a Progress in Probability ;  |v 66 
856 4 0 |u http://dx.doi.org/10.1007/978-3-0348-0490-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)