The Localization Problem in Index Theory of Elliptic Operators
This book deals with the localization approach to the index problem for elliptic operators. Localization ideas have been widely used for solving various specific index problems for a long time, but the fact that there is actually a fundamental localization principle underlying all these solutions ha...
Κύριοι συγγραφείς: | , , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Basel :
Springer Basel : Imprint: Birkhäuser,
2014.
|
Σειρά: | Pseudo-Differential Operators, Theory and Applications ;
10 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Preface
- Introduction
- 0.1 Basics of Elliptic Theory
- 0.2 Surgery and the Superposition Principle
- 0.3 Examples and Applications
- 0.4 Bibliographical Remarks
- Part I: Superposition Principle
- 1 Superposition Principle for the Relative Index
- 1.1 Collar Spaces
- 1.2 Proper Operators and Fredholm Operators
- 1.3 Superposition Principle
- 2 Superposition Principle for K-Homology
- 2.1 Preliminaries
- 2.2 Fredholm Modules and K-Homology
- 2.3 Superposition Principle
- 2.4 Fredholm Modules and Elliptic Operators
- 3 Superposition Principle for KK-Theory
- 3.1 Preliminaries
- 3.2 Hilbert Modules, Kasparov Modules, and KK
- 3.3 Superposition Principle
- Part II: Examples
- 4 Elliptic Operators on Noncompact Manifolds
- 4.1 Gromov–Lawson Theorem
- 4.2 Bunke Theorem
- 4.3 Roe’s Relative Index Construction
- 5 Applications to Boundary Value Problems
- 5.1 Preliminaries
- 5.2 Agranovich–Dynin Theorem
- 5.3 Agranovich Theorem
- 5.4 Bojarski Theorem and Its Generalizations
- 5.5 Boundary Value Problems with Symmetric Conormal Symbol
- 6 Spectral Flow for Families of Dirac Type Operators
- 6.1 Statement of the Problem
- 6.2 Simple Example
- 6.3 Formula for the Spectral Flow
- 6.4 Computation of the Spectral Flow for a Graphene Sheet
- Bibliography.