Variable Lebesgue Spaces Foundations and Harmonic Analysis /
This book provides an accessible introduction to the theory of variable Lebesgue spaces. These spaces generalize the classical Lebesgue spaces by replacing the constant exponent p with a variable exponent p(x). They were introduced in the early 1930s but have become the focus of renewed interest sin...
| Κύριοι συγγραφείς: | , |
|---|---|
| Συγγραφή απο Οργανισμό/Αρχή: | |
| Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
| Γλώσσα: | English |
| Έκδοση: |
Basel :
Springer Basel : Imprint: Birkhäuser,
2013.
|
| Σειρά: | Applied and Numerical Harmonic Analysis
|
| Θέματα: | |
| Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- 1 Introduction
- 2 Structure of Variable Lebesgue Spaces
- 3 The Hardy-Littlewood Maximal Operator.- 4 Beyond Log-Hölder Continuity
- 5 Extrapolation in the Variable Lebesgue Spaces
- 6 Basic Properties of Variable Sobolev Spaces
- Appendix: Open Problems
- Bibliography
- Symbol Index
- Author Index
- Subject Index. .