Offbeat Integral Geometry on Symmetric Spaces
The book demonstrates the development of integral geometry on domains of homogeneous spaces since 1990. It covers a wide range of topics, including analysis on multidimensional Euclidean domains and Riemannian symmetric spaces of arbitrary ranks as well as recent work on phase space and the Heisenbe...
Κύριοι συγγραφείς: | , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Basel :
Springer Basel : Imprint: Birkhäuser,
2013.
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Preface
- Part 1. Analysis on Symmetric Spaces. 1 Preliminaries
- 2 The Euclidean case
- 3 Symmetric spaces of the non-compact type.-4 Analogies for compact two-point homogeneous Spaces
- 5 The phase space associated to the Heisenberg group.-Part 2. Offbeat Integral Geometry
- 1 Functions with zero ball means on Euclidean space
- 2 Two-radii theorems in symmetric spaces
- 3 The problem of finding a function from its ball means
- 4 Sets with the Pompeiu property
- 5 Functions with zero integrals over polytopes.-6 Ellipsoidal means
- 7 The Pompeiu property on a sphere
- 8 The Pompeiu transform on symmetric spaces and groups.-9 Pompeiu transforms on manifolds
- Bibliography
- Index
- Basic notation.