Decay of the Fourier Transform Analytic and Geometric Aspects /

The Plancherel formula says that the L2 norm of the function is equal to the L2 norm of its Fourier transform. This implies that at least on average, the Fourier transform of an L2 function decays at infinity. This book is dedicated to the study of the rate of this decay under various assumptions an...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Iosevich, Alex (Συγγραφέας), Liflyand, Elijah (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Springer Basel : Imprint: Birkhäuser, 2014.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02401nam a22004575i 4500
001 978-3-0348-0625-1
003 DE-He213
005 20160428140517.0
007 cr nn 008mamaa
008 141001s2014 sz | s |||| 0|eng d
020 |a 9783034806251  |9 978-3-0348-0625-1 
024 7 |a 10.1007/978-3-0348-0625-1  |2 doi 
040 |d GrThAP 
050 4 |a QA299.6-433 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515  |2 23 
100 1 |a Iosevich, Alex.  |e author. 
245 1 0 |a Decay of the Fourier Transform  |h [electronic resource] :  |b Analytic and Geometric Aspects /  |c by Alex Iosevich, Elijah Liflyand. 
264 1 |a Basel :  |b Springer Basel :  |b Imprint: Birkhäuser,  |c 2014. 
300 |a XII, 222 p. 5 illus., 2 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Foreword -- Introduction -- Chapter 1. Basic properties of the Fourier transform -- Chapter 2. Oscillatory integrals and Fourier transforms in one variable -- Chapter 3. The Fourier transform of an oscillating function -- Chapter 4. The Fourier transform of a radial function -- Chapter 5. Multivariate extensions -- Appendix -- Bibliography. 
520 |a The Plancherel formula says that the L2 norm of the function is equal to the L2 norm of its Fourier transform. This implies that at least on average, the Fourier transform of an L2 function decays at infinity. This book is dedicated to the study of the rate of this decay under various assumptions and circumstances, far beyond the original L2 setting. Analytic and geometric properties of the underlying functions interact in a seamless symbiosis which underlines the wide range influences and applications of the concepts under consideration. 
650 0 |a Mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Fourier analysis. 
650 1 4 |a Mathematics. 
650 2 4 |a Analysis. 
650 2 4 |a Fourier Analysis. 
700 1 |a Liflyand, Elijah.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783034806244 
856 4 0 |u http://dx.doi.org/10.1007/978-3-0348-0625-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)