Introduction to Mathematical Analysis

The book begins at an undergraduate student level, assuming only basic knowledge of calculus in one variable. It rigorously treats topics such as multivariable differential calculus, the Lebesgue integral, vector calculus and differential equations. After having created a solid foundation of topolog...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Kriz, Igor (Συγγραφέας), Pultr, Aleš (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Springer Basel : Imprint: Birkhäuser, 2013.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03614nam a22005655i 4500
001 978-3-0348-0636-7
003 DE-He213
005 20151107111015.0
007 cr nn 008mamaa
008 130725s2013 sz | s |||| 0|eng d
020 |a 9783034806367  |9 978-3-0348-0636-7 
024 7 |a 10.1007/978-3-0348-0636-7  |2 doi 
040 |d GrThAP 
050 4 |a QA331.5 
072 7 |a PBKB  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a MAT037000  |2 bisacsh 
082 0 4 |a 515.8  |2 23 
100 1 |a Kriz, Igor.  |e author. 
245 1 0 |a Introduction to Mathematical Analysis  |h [electronic resource] /  |c by Igor Kriz, Aleš Pultr. 
264 1 |a Basel :  |b Springer Basel :  |b Imprint: Birkhäuser,  |c 2013. 
300 |a XX, 510 p. 1 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Preface -- Introduction -- Part 1. A Rigorous Approach to Advanced Calculus -- 1. Preliminaries -- 2. Metric and Topological Spaces I -- 3. Multivariable Differential Calculus -- 4. Integration I: Multivariable Riemann Integral and Basic Ideas toward the Lebesgue Integral -- 5. Integration II: Measurable Functions, Measure and the Techniques of Lebesgue Integration -- 6. Systems of Ordinary Differential Equations -- 7. System of Linear Differential Equations -- 8. Line Integrals and Green's Theorem -- Part 2. Analysis and Geometry -- 9. An Introduction to Complex Analysis -- 10. Metric and Topological Spaces II -- 11. Multilinear Algebra -- 12. Smooth Manifolds, Differential Forms and Stokes' Theorem -- 13. Calculus of Variations and the Geodesic Equation -- 14. Tensor Calculus and Riemannian Geometry -- 15. Hilbert Spaces I: Definitions and Basic Properties -- 16. Hilbert Spaces II: Examples and Applications -- Appendix A. Linear Algebra I: Vector Spaces -- Appendix B. Linear Algebra II: More about Matrices -- Bibliography -- Index of Symbols -- Index.  . 
520 |a The book begins at an undergraduate student level, assuming only basic knowledge of calculus in one variable. It rigorously treats topics such as multivariable differential calculus, the Lebesgue integral, vector calculus and differential equations. After having created a solid foundation of topology and linear algebra, the text later expands into more advanced topics such as complex analysis, differential forms, calculus of variations, differential geometry and even functional analysis. Overall, this text provides a unique and well-rounded introduction to the highly developed and multi-faceted subject of mathematical analysis as understood by mathematicians today. 
650 0 |a Mathematics. 
650 0 |a Matrix theory. 
650 0 |a Algebra. 
650 0 |a Functions of complex variables. 
650 0 |a Measure theory. 
650 0 |a Differential equations. 
650 0 |a Functions of real variables. 
650 0 |a Sequences (Mathematics). 
650 1 4 |a Mathematics. 
650 2 4 |a Real Functions. 
650 2 4 |a Linear and Multilinear Algebras, Matrix Theory. 
650 2 4 |a Measure and Integration. 
650 2 4 |a Functions of a Complex Variable. 
650 2 4 |a Ordinary Differential Equations. 
650 2 4 |a Sequences, Series, Summability. 
700 1 |a Pultr, Aleš.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783034806350 
856 4 0 |u http://dx.doi.org/10.1007/978-3-0348-0636-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)