Cardinal Invariants on Boolean Algebras Second Revised Edition /

This book is concerned with cardinal number valued functions defined for any Boolean algebra. Examples of such functions are independence, which assigns to each Boolean algebra the supremum of the cardinalities of its free subalgebras, and cellularity, which gives the supremum of cardinalities of se...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Monk, J. Donald (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Springer Basel : Imprint: Birkhäuser, 2014.
Έκδοση:2nd ed. 2014.
Σειρά:Progress in Mathematics, 142
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03854nam a22004935i 4500
001 978-3-0348-0730-2
003 DE-He213
005 20151103132347.0
007 cr nn 008mamaa
008 140211s2014 sz | s |||| 0|eng d
020 |a 9783034807302  |9 978-3-0348-0730-2 
024 7 |a 10.1007/978-3-0348-0730-2  |2 doi 
040 |d GrThAP 
050 4 |a QA8.9-10.3 
072 7 |a PBC  |2 bicssc 
072 7 |a PBCD  |2 bicssc 
072 7 |a MAT018000  |2 bisacsh 
082 0 4 |a 511.3  |2 23 
100 1 |a Monk, J. Donald.  |e author. 
245 1 0 |a Cardinal Invariants on Boolean Algebras  |h [electronic resource] :  |b Second Revised Edition /  |c by J. Donald Monk. 
250 |a 2nd ed. 2014. 
264 1 |a Basel :  |b Springer Basel :  |b Imprint: Birkhäuser,  |c 2014. 
300 |a VII, 573 p. 15 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematics,  |x 0743-1643 ;  |v 142 
505 0 |a Introduction -- 1. Special Operations on Boolean Algebras -- 2. Special Classes of Boolean Algebras -- 3. Cellularity -- 4. Depth -- 5. Topological Density -- 6. Pi-Weight -- 7. Length -- 8. Irredundance -- 9. Cardinality -- 10. Independence -- 11. Pi-Character -- 12. Tightness -- 13. Spread -- 14. Character -- 15. Hereditary Lindelöf Degree -- 16. Hereditary Density -- 17. Incomparability -- 18. Hereditary Cofinality -- 19. Number of Ultrafilters -- 20. Number of Automorphisms -- 21. Number of Endomorphisms -- 22. Number of Ideals -- 23. Number of Subalgebras -- 24. Other Cardinal Functions -- 25. Diagrams -- 26. Examples -- 27. Problems -- References -- Symbol Index -- Subject Index -- Name Index. 
520 |a This book is concerned with cardinal number valued functions defined for any Boolean algebra. Examples of such functions are independence, which assigns to each Boolean algebra the supremum of the cardinalities of its free subalgebras, and cellularity, which gives the supremum of cardinalities of sets of pairwise disjoint elements. Twenty-one such functions are studied in detail, and many more in passing. The questions considered are the behaviour of these functions under algebraic operations such as products, free products, ultraproducts, and their relationships to one another. Assuming familiarity with only the basics of Boolean algebras and set theory, through simple infinite combinatorics and forcing, the book reviews current knowledge about these functions, giving complete proofs for most facts. A special feature of the book is the attention given to open problems, of which 185 are formulated. Based on Cardinal Functions on Boolean Algebras (1990) and Cardinal Invariants on Boolean Algebras (1996) by the same author, the present work is much larger than either of these. It contains solutions to many of the open problems of the earlier volumes. Among the new topics are continuum cardinals on Boolean algebras, with a lengthy treatment of the reaping number. Diagrams at the end of the book summarize the relationships between the functions for many important classes of Boolean algebras, including interval algebras, tree algebras and superatomic algebras. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Ordered algebraic structures. 
650 0 |a Mathematical logic. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematical Logic and Foundations. 
650 2 4 |a Order, Lattices, Ordered Algebraic Structures. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783034807296 
830 0 |a Progress in Mathematics,  |x 0743-1643 ;  |v 142 
856 4 0 |u http://dx.doi.org/10.1007/978-3-0348-0730-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)