Positional Games

This text serves as a thorough introduction to the rapidly developing field of positional games. This area constitutes an important branch of combinatorics, whose aim it is to systematically develop an extensive mathematical basis for a variety of two-player perfect information games. These range fr...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Hefetz, Dan (Συγγραφέας), Krivelevich, Michael (Συγγραφέας), Stojaković, Miloš (Συγγραφέας), Szabó, Tibor (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Springer Basel : Imprint: Birkhäuser, 2014.
Σειρά:Oberwolfach Seminars, 44
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02884nam a22004935i 4500
001 978-3-0348-0825-5
003 DE-He213
005 20151029211855.0
007 cr nn 008mamaa
008 140613s2014 sz | s |||| 0|eng d
020 |a 9783034808255  |9 978-3-0348-0825-5 
024 7 |a 10.1007/978-3-0348-0825-5  |2 doi 
040 |d GrThAP 
050 4 |a QA164-167.2 
072 7 |a PBV  |2 bicssc 
072 7 |a MAT036000  |2 bisacsh 
082 0 4 |a 511.6  |2 23 
100 1 |a Hefetz, Dan.  |e author. 
245 1 0 |a Positional Games  |h [electronic resource] /  |c by Dan Hefetz, Michael Krivelevich, Miloš Stojaković, Tibor Szabó. 
264 1 |a Basel :  |b Springer Basel :  |b Imprint: Birkhäuser,  |c 2014. 
300 |a X, 146 p. 13 illus., 8 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Oberwolfach Seminars,  |x 1661-237X ;  |v 44 
505 0 |a Preface -- 1 Introduction -- 2 Maker-Breaker Games -- 3 Biased Games -- 4 Avoider-Enforcer Games -- 5 The Connectivity Game -- 6 The Hamiltonicity Game -- 7 Fast and Strong -- 8 Random Boards -- 9 The Neighborhood Conjecture -- Bibliography. 
520 |a This text serves as a thorough introduction to the rapidly developing field of positional games. This area constitutes an important branch of combinatorics, whose aim it is to systematically develop an extensive mathematical basis for a variety of two-player perfect information games. These range from such popular games as Tic-Tac-Toe and Hex to purely abstract games played on graphs and hypergraphs. The subject of positional games is strongly related to several other branches of combinatorics such as Ramsey theory, extremal graph and set theory, and the probabilistic method. These notes cover a variety of topics in positional games, including both classical results and recent important developments. They are presented in an accessible way and are accompanied by exercises of varying difficulty, helping the reader to better understand the theory. The text will benefit both researchers and graduate students in combinatorics and adjacent fields. 
650 0 |a Mathematics. 
650 0 |a Game theory. 
650 0 |a Combinatorics. 
650 1 4 |a Mathematics. 
650 2 4 |a Combinatorics. 
650 2 4 |a Game Theory, Economics, Social and Behav. Sciences. 
700 1 |a Krivelevich, Michael.  |e author. 
700 1 |a Stojaković, Miloš.  |e author. 
700 1 |a Szabó, Tibor.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783034808248 
830 0 |a Oberwolfach Seminars,  |x 1661-237X ;  |v 44 
856 4 0 |u http://dx.doi.org/10.1007/978-3-0348-0825-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)