Analysis on h-Harmonics and Dunkl Transforms

As a unique case in this Advanced Courses book series, the authors have jointly written this introduction to h-harmonics and Dunkl transforms. These are extensions of the ordinary spherical harmonics and Fourier transforms, in which the usual Lebesgue measure is replaced by a reflection-invariant we...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Dai, Feng (Συγγραφέας), Xu, Yuan (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Tikhonov, Sergey (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Springer Basel : Imprint: Birkhäuser, 2015.
Σειρά:Advanced Courses in Mathematics - CRM Barcelona,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03237nam a22005415i 4500
001 978-3-0348-0887-3
003 DE-He213
005 20151103122044.0
007 cr nn 008mamaa
008 150121s2015 sz | s |||| 0|eng d
020 |a 9783034808873  |9 978-3-0348-0887-3 
024 7 |a 10.1007/978-3-0348-0887-3  |2 doi 
040 |d GrThAP 
050 4 |a QA401-425 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 511.4  |2 23 
100 1 |a Dai, Feng.  |e author. 
245 1 0 |a Analysis on h-Harmonics and Dunkl Transforms  |h [electronic resource] /  |c by Feng Dai, Yuan Xu ; edited by Sergey Tikhonov. 
264 1 |a Basel :  |b Springer Basel :  |b Imprint: Birkhäuser,  |c 2015. 
300 |a VIII, 118 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advanced Courses in Mathematics - CRM Barcelona,  |x 2297-0304 
505 0 |a Preface -- Spherical harmonics and Fourier transform -- Dunkl operators associated with reflection groups -- h-Harmonics and analysis on the sphere -- Littlewood–Paley theory and the multiplier theorem -- Sharp Jackson and sharp Marchaud inequalities -- Dunkl transform -- Multiplier theorems for the Dunkl transform -- Bibliography. 
520 |a As a unique case in this Advanced Courses book series, the authors have jointly written this introduction to h-harmonics and Dunkl transforms. These are extensions of the ordinary spherical harmonics and Fourier transforms, in which the usual Lebesgue measure is replaced by a reflection-invariant weighted measure. The theory, originally introduced by C. Dunkl, has been expanded on by many authors over the last 20 years. These notes provide an overview of what has been developed so far. The first chapter gives a brief recount of the basics of ordinary spherical harmonics and the Fourier transform. The Dunkl operators, the intertwining operators between partial derivatives and the Dunkl operators are introduced and discussed in the second chapter. The next three chapters are devoted to analysis on the sphere, and the final two chapters to the Dunkl transform. The authors’ focus is on the analysis side of both h-harmonics and Dunkl transforms. The need for background knowledge on reflection groups is kept to a bare minimum. 
650 0 |a Mathematics. 
650 0 |a Harmonic analysis. 
650 0 |a Approximation theory. 
650 0 |a Functional analysis. 
650 0 |a Integral transforms. 
650 0 |a Operational calculus. 
650 1 4 |a Mathematics. 
650 2 4 |a Approximations and Expansions. 
650 2 4 |a Abstract Harmonic Analysis. 
650 2 4 |a Integral Transforms, Operational Calculus. 
650 2 4 |a Functional Analysis. 
700 1 |a Xu, Yuan.  |e author. 
700 1 |a Tikhonov, Sergey.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783034808866 
830 0 |a Advanced Courses in Mathematics - CRM Barcelona,  |x 2297-0304 
856 4 0 |u http://dx.doi.org/10.1007/978-3-0348-0887-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)