Mathematics of Aperiodic Order

What is order that is not based on simple repetition, that is, periodicity? How must atoms be arranged in a material so that it diffracts like a quasicrystal? How can we describe aperiodically ordered systems mathematically? Originally triggered by the – later Nobel prize-winning – discovery of quas...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Kellendonk, Johannes (Επιμελητής έκδοσης), Lenz, Daniel (Επιμελητής έκδοσης), Savinien, Jean (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Springer Basel : Imprint: Birkhäuser, 2015.
Σειρά:Progress in Mathematics, 309
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Preface
  • 1.M. Baake, M. Birkner and U. Grimm: Non-Periodic Systems with Continuous Diffraction Measures
  • 2.S. Akiyama, M. Barge, V. Berthé, J.-Y. Lee and A. Siegel: On the Pisot Substitution Conjecture
  • 3. L. Sadun: Cohomology of Hierarchical Tilings
  • 4.J. Hunton: Spaces of Projection Method Patterns and their Cohomology
  • 5.J.-B. Aujogue, M. Barge, J. Kellendonk, D. Lenz: Equicontinuous Factors, Proximality and Ellis Semigroup for Delone Sets
  • 6.J. Aliste-Prieto, D. Coronel, M.I. Cortez, F. Durand and S. Petite: Linearly Repetitive Delone Sets
  • 7.N. Priebe Frank: Tilings with Infinite Local Complexity
  • 8. A.Julien, J. Kellendonk and J. Savinien: On the Noncommutative Geometry of Tilings
  • 9.D. Damanik, M. Embree and A. Gorodetski: Spectral Properties of Schrödinger Operators Arising in the Study of Quasicrystals
  • 10.S. Puzynina and L.Q. Zamboni: Additive Properties of Sets and Substitutive Dynamics
  • 11.J.V. Bellissard: Delone Sets and Material Science: a Program.