Mathematics of Aperiodic Order
What is order that is not based on simple repetition, that is, periodicity? How must atoms be arranged in a material so that it diffracts like a quasicrystal? How can we describe aperiodically ordered systems mathematically? Originally triggered by the – later Nobel prize-winning – discovery of quas...
Συγγραφή απο Οργανισμό/Αρχή: | |
---|---|
Άλλοι συγγραφείς: | , , |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Basel :
Springer Basel : Imprint: Birkhäuser,
2015.
|
Σειρά: | Progress in Mathematics,
309 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Preface
- 1.M. Baake, M. Birkner and U. Grimm: Non-Periodic Systems with Continuous Diffraction Measures
- 2.S. Akiyama, M. Barge, V. Berthé, J.-Y. Lee and A. Siegel: On the Pisot Substitution Conjecture
- 3. L. Sadun: Cohomology of Hierarchical Tilings
- 4.J. Hunton: Spaces of Projection Method Patterns and their Cohomology
- 5.J.-B. Aujogue, M. Barge, J. Kellendonk, D. Lenz: Equicontinuous Factors, Proximality and Ellis Semigroup for Delone Sets
- 6.J. Aliste-Prieto, D. Coronel, M.I. Cortez, F. Durand and S. Petite: Linearly Repetitive Delone Sets
- 7.N. Priebe Frank: Tilings with Infinite Local Complexity
- 8. A.Julien, J. Kellendonk and J. Savinien: On the Noncommutative Geometry of Tilings
- 9.D. Damanik, M. Embree and A. Gorodetski: Spectral Properties of Schrödinger Operators Arising in the Study of Quasicrystals
- 10.S. Puzynina and L.Q. Zamboni: Additive Properties of Sets and Substitutive Dynamics
- 11.J.V. Bellissard: Delone Sets and Material Science: a Program.