Moduli Spaces of Riemannian Metrics

This book studies certain spaces of Riemannian metrics on both compact and non-compact manifolds. These spaces are defined by various sign-based curvature conditions, with special attention paid to positive scalar curvature and non-negative sectional curvature, though we also consider positive Ricci...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Tuschmann, Wilderich (Συγγραφέας), Wraith, David J. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Springer Basel : Imprint: Birkhäuser, 2015.
Σειρά:Oberwolfach Seminars, 46
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Part I: Positive scalar curvature
  • The (moduli) space of all Riemannian metrics
  • Clifford algebras and spin
  • Dirac operators and index theorems
  • Early results on the space of positive scalar curvature metrics
  • Kreck-Stolz invariants
  • Applications of Kreck-Stolz invariants
  • The eta invariant and applications
  • The case of dimensions 2 and 3
  • The observer moduli space and applications
  • Other topological structures
  • Negative scalar and Ricci curvature.- Part II: Sectional curvature
  • Moduli spaces of compact manifolds with positive or non-negative sectional curvature
  • Moduli spaces of compact manifolds with negative and non-positive sectional curvature
  • Moduli spaces of non-compact manifolds with non-negative sectional curvature
  • Positive pinching and the Klingenberg-Sakai conjecture.