Algorithms in Invariant Theory

J. Kung and G.-C. Rota, in their 1984 paper, write: “Like the Arabian phoenix rising out of its ashes, the theory of invariants, pronounced dead at the turn of the century, is once again at the forefront of mathematics”. The book of Sturmfels is both an easy-to-read textbook for invariant theory and...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Sturmfels, Bernd (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Vienna : Springer Vienna, 2008.
Έκδοση:Second edition.
Σειρά:Texts and Monographs in Symbolic Computation,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02888nam a22005655i 4500
001 978-3-211-77417-5
003 DE-He213
005 20151125192259.0
007 cr nn 008mamaa
008 100301s2008 au | s |||| 0|eng d
020 |a 9783211774175  |9 978-3-211-77417-5 
024 7 |a 10.1007/978-3-211-77417-5  |2 doi 
040 |d GrThAP 
050 4 |a QA8.9-QA10.3 
072 7 |a UYA  |2 bicssc 
072 7 |a MAT018000  |2 bisacsh 
072 7 |a COM051010  |2 bisacsh 
082 0 4 |a 005.131  |2 23 
100 1 |a Sturmfels, Bernd.  |e author. 
245 1 0 |a Algorithms in Invariant Theory  |h [electronic resource] /  |c by Bernd Sturmfels. 
250 |a Second edition. 
264 1 |a Vienna :  |b Springer Vienna,  |c 2008. 
300 |a VII, 197 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Texts and Monographs in Symbolic Computation,  |x 0943-853X 
505 0 |a Invariant theory of finite groups -- Bracket algebra and projective geometry -- Invariants of the general linear group. 
520 |a J. Kung and G.-C. Rota, in their 1984 paper, write: “Like the Arabian phoenix rising out of its ashes, the theory of invariants, pronounced dead at the turn of the century, is once again at the forefront of mathematics”. The book of Sturmfels is both an easy-to-read textbook for invariant theory and a challenging research monograph that introduces a new approach to the algorithmic side of invariant theory. The Groebner bases method is the main tool by which the central problems in invariant theory become amenable to algorithmic solutions. Students will find the book an easy introduction to this “classical and new” area of mathematics. Researchers in mathematics, symbolic computation, and computer science will get access to a wealth of research ideas, hints for applications, outlines and details of algorithms, worked out examples, and research problems. 
650 0 |a Computer science. 
650 0 |a Mathematical logic. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Artificial intelligence. 
650 0 |a Algebraic geometry. 
650 0 |a Combinatorics. 
650 1 4 |a Computer Science. 
650 2 4 |a Mathematical Logic and Formal Languages. 
650 2 4 |a Combinatorics. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Symbolic and Algebraic Manipulation. 
650 2 4 |a Mathematical Logic and Foundations. 
650 2 4 |a Algebraic Geometry. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783211774168 
830 0 |a Texts and Monographs in Symbolic Computation,  |x 0943-853X 
856 4 0 |u http://dx.doi.org/10.1007/978-3-211-77417-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)