Advances of Soft Computing in Engineering

The articles in this book present advanced soft methods related to genetic and evolutionary algorithms, immune systems, formulation of deterministic neural networks and Bayesian NN. Many attention is paid to hybrid systems for inverse analysis fusing soft methods and the finite element method. Numer...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Waszczyszyn, Zenon (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Vienna : Springer Vienna, 2010.
Σειρά:CISM International Centre for Mechanical Sciences, 512
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02609nam a22005295i 4500
001 978-3-211-99768-0
003 DE-He213
005 20151204174710.0
007 cr nn 008mamaa
008 100301s2010 au | s |||| 0|eng d
020 |a 9783211997680  |9 978-3-211-99768-0 
024 7 |a 10.1007/978-3-211-99768-0  |2 doi 
040 |d GrThAP 
050 4 |a TJ1-1570 
072 7 |a TGB  |2 bicssc 
072 7 |a TEC009070  |2 bisacsh 
082 0 4 |a 621  |2 23 
245 1 0 |a Advances of Soft Computing in Engineering  |h [electronic resource] /  |c edited by Zenon Waszczyszyn. 
264 1 |a Vienna :  |b Springer Vienna,  |c 2010. 
300 |a VIII, 336 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a CISM International Centre for Mechanical Sciences,  |x 0254-1971 ;  |v 512 
505 0 |a Genetic Algorithms for Design -- Evolutionary and Immune Computations in Optimal Design and Inverse Problems -- Applications of GA and GP to Industrial Design Optimization and Inverse Problems -- Advances in Neural Networks in Computational Mechanics and Engineering -- Selected Problems of Artificial Neural Networks Development -- Neural Networks: Some Successful Applications in Computational Mechanics. 
520 |a The articles in this book present advanced soft methods related to genetic and evolutionary algorithms, immune systems, formulation of deterministic neural networks and Bayesian NN. Many attention is paid to hybrid systems for inverse analysis fusing soft methods and the finite element method. Numerical efficiency of these soft methods is illustrated on the analysis and design of complex engineering structures. 
650 0 |a Engineering. 
650 0 |a Artificial intelligence. 
650 0 |a Computational intelligence. 
650 0 |a Structural mechanics. 
650 0 |a Mechanical engineering. 
650 0 |a Civil engineering. 
650 1 4 |a Engineering. 
650 2 4 |a Mechanical Engineering. 
650 2 4 |a Civil Engineering. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Structural Mechanics. 
650 2 4 |a Computational Intelligence. 
700 1 |a Waszczyszyn, Zenon.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783211997673 
830 0 |a CISM International Centre for Mechanical Sciences,  |x 0254-1971 ;  |v 512 
856 4 0 |u http://dx.doi.org/10.1007/978-3-211-99768-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)