Lyapunov Functionals and Stability of Stochastic Functional Differential Equations

Stability conditions for functional differential equations can be obtained using Lyapunov functionals. Lyapunov Functionals and Stability of Stochastic Functional Differential Equations describes the general method of construction of Lyapunov functionals to investigate the stability of differential...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Shaikhet, Leonid (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Heidelberg : Springer International Publishing : Imprint: Springer, 2013.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04310nam a22005655i 4500
001 978-3-319-00101-2
003 DE-He213
005 20151125193257.0
007 cr nn 008mamaa
008 130330s2013 gw | s |||| 0|eng d
020 |a 9783319001012  |9 978-3-319-00101-2 
024 7 |a 10.1007/978-3-319-00101-2  |2 doi 
040 |d GrThAP 
050 4 |a TJ212-225 
072 7 |a TJFM  |2 bicssc 
072 7 |a TEC004000  |2 bisacsh 
082 0 4 |a 629.8  |2 23 
100 1 |a Shaikhet, Leonid.  |e author. 
245 1 0 |a Lyapunov Functionals and Stability of Stochastic Functional Differential Equations  |h [electronic resource] /  |c by Leonid Shaikhet. 
264 1 |a Heidelberg :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2013. 
300 |a XII, 342 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Short Introduction to Stability Theory of Deterministic Functional Differential Equations -- Stability of Linear Scalar Equations -- Stability of Linear Systems of Two Equations -- Stability of Systems with Nonlinearities -- Matrix Riccati Equations in Stability of Linear Stochastic Differential Equations with Delays -- Stochastic Systems with Markovian Switching -- Stabilization of the Controlled Inverted Pendulum by Control with Delay -- Stability of Equilibrium Points of Nicholson’s Blowflies Equation with Stochastic Perturbations -- Stability of Positive Equilibrium Point of Nonlinear System of Type of Predator-Prey with Aftereffect and Stochastic Perturbations -- Stability of SIR Epidemic Model Equilibrium Points -- Stability of Some Social Mathematical Models with Delay by Stochastic Perturbations. 
520 |a Stability conditions for functional differential equations can be obtained using Lyapunov functionals. Lyapunov Functionals and Stability of Stochastic Functional Differential Equations describes the general method of construction of Lyapunov functionals to investigate the stability of differential equations with delays. This work continues and complements the author’s previous book Lyapunov Functionals and Stability of Stochastic Difference Equations, where this method is described for discrete- and continuous-time difference equations. The text begins with a description of the peculiarities of deterministic and stochastic functional differential equations. There follow basic definitions for stability theory of stochastic hereditary systems, and a formal procedure of Lyapunov functionals construction is presented. Stability investigation is conducted for stochastic linear and nonlinear differential equations with constant and distributed delays. The proposed method is used for stability investigation of different mathematical models such as: • inverted controlled pendulum; • Nicholson's blowflies equation; • predator-prey relationships; • epidemic development; and • mathematical models that describe human behaviours related to addictions and obesity. Lyapunov Functionals and Stability of Stochastic Functional Differential Equations is primarily addressed to experts in stability theory but will also be of interest to professionals and students in pure and computational mathematics, physics, engineering, medicine, and biology. 
650 0 |a Engineering. 
650 0 |a Difference equations. 
650 0 |a Functional equations. 
650 0 |a Calculus of variations. 
650 0 |a Probabilities. 
650 0 |a Statistical physics. 
650 0 |a Dynamical systems. 
650 0 |a Vibration. 
650 0 |a Dynamics. 
650 0 |a Control engineering. 
650 1 4 |a Engineering. 
650 2 4 |a Control. 
650 2 4 |a Difference and Functional Equations. 
650 2 4 |a Statistical Physics, Dynamical Systems and Complexity. 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Vibration, Dynamical Systems, Control. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319001005 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-00101-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)